
Paola Occhetta

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5152002/publications.pdf Version: 2024-02-01

Ρλοιλ Οсснетта

#	Article	IF	CITATIONS
1	Mechanical Induction of Osteoarthritis Traits in a Cartilage-on-a-Chip Model. Methods in Molecular Biology, 2022, 2373, 231-251.	0.9	2
2	Photo and Soft Lithography for Organ-on-Chip Applications. Methods in Molecular Biology, 2022, 2373, 1-19.	0.9	15
3	Electromechanical Stimulation of 3D Cardiac Microtissues in a Heart-on-Chip Model. Methods in Molecular Biology, 2022, 2373, 133-157.	0.9	4
4	Micro-electrode channel guide (µECG) technology: an online method for continuous electrical recording in a human beating heart-on-chip. Biofabrication, 2021, 13, 035026.	7.1	22
5	Engineered nasal cartilage for the repair of osteoarthritic knee cartilage defects. Science Translational Medicine, 2021, 13, eaaz4499.	12.4	22
6	Modeling In Vitro Osteoarthritis Phenotypes in a Vascularized Bone Model Based on a Bone-Marrow Derived Mesenchymal Cell Line and Endothelial Cells. International Journal of Molecular Sciences, 2021, 22, 9581.	4.1	6
7	Current strategies of mechanical stimulation for maturation of cardiac microtissues. Biophysical Reviews, 2021, 13, 717-727.	3.2	21
8	A dynamic microscale mid-throughput fibrosis model to investigate the effects of different ratios of cardiomyocytes and fibroblasts. Lab on A Chip, 2021, 21, 4177-4195.	6.0	13
9	Intervertebral Disc-on-a-Chip as Advanced In Vitro Model for Mechanobiology Research and Drug Testing: A Review and Perspective. Frontiers in Bioengineering and Biotechnology, 2021, 9, 826867.	4.1	5
10	Integrating Biosensors in Organs-on-Chip Devices: A Perspective on Current Strategies to Monitor Microphysiological Systems. Biosensors, 2020, 10, 110.	4.7	65
11	Blockage of bone morphogenetic protein signalling counteracts hypertrophy in a human osteoarthritic micro-cartilage model. Journal of Cell Science, 2020, 133, .	2.0	16
12	Challenges Toward the Identification of Predictive Markers for Human Mesenchymal Stromal Cells Chondrogenic Potential. Stem Cells Translational Medicine, 2019, 8, 194-204.	3.3	16
13	Hyperphysiological compression of articular cartilage induces an osteoarthritic phenotype in a cartilage-on-a-chip model. Nature Biomedical Engineering, 2019, 3, 545-557.	22.5	126
14	Developmentally inspired programming of adult human mesenchymal stromal cells toward stable chondrogenesis. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4625-4630.	7.1	53
15	Delivery of cellular factors to regulate bone healing. Advanced Drug Delivery Reviews, 2018, 129, 285-294.	13.7	51
16	Design and validation of a microfluidic device for blood–brain barrier monitoring and transport studies. Journal of Micromechanics and Microengineering, 2018, 28, 044001.	2.6	16
17	A three-dimensional <i>in vitro</i> dynamic micro-tissue model of cardiac scar formation. Integrative Biology (United Kingdom), 2018, 10, 174-183.	1.3	33
18	Development of a microfluidic platform for highâ€ŧhroughput screening of nonâ€viral gene delivery vectors. Biotechnology and Bioengineering, 2018, 115, 775-784.	3.3	10

ΡΑΟΙΑ ΟССΗΕΤΤΑ

#	Article	IF	CITATIONS
19	A microscale biomimetic platform for generation and electro-mechanical stimulation of 3D cardiac microtissues. APL Bioengineering, 2018, 2, 046102.	6.2	36
20	High-Throughput Microfluidic Platform for 3D Cultures of Mesenchymal Stem Cells. Methods in Molecular Biology, 2017, 1612, 303-323.	0.9	9
21	Design of a microfluidic strategy for trapping and screening single cells. Medical Engineering and Physics, 2016, 38, 33-40.	1.7	6
22	Gelatin hydrogels via thiol-ene chemistry. Monatshefte Für Chemie, 2016, 147, 587-592.	1.8	24
23	Beating heart on a chip: a novel microfluidic platform to generate functional 3D cardiac microtissues. Lab on A Chip, 2016, 16, 599-610.	6.0	322
24	Learn, simplify and implement: developmental re-engineering strategies for cartilage repai. Swiss Medical Weekly, 2016, 146, w14346.	1.6	6
25	High-Throughput Microfluidic Platform for 3D Cultures of Mesenchymal Stem Cells, Towards Engineering Developmental Processes. Scientific Reports, 2015, 5, 10288.	3.3	76
26	Lab-on-Chip for testing myelotoxic effect of drugs and chemicals. Microfluidics and Nanofluidics, 2015, 19, 935-940.	2.2	7
27	VAâ€086 methacrylate gelatine photopolymerizable hydrogels: A parametric study for highly biocompatible 3 <scp>D</scp> cell embedding. Journal of Biomedical Materials Research - Part A, 2015, 103, 2109-2117.	4.0	94
28	High-throughput microfluidic platform for adherent single cells non-viral gene delivery. RSC Advances, 2015, 5, 5087-5095.	3.6	13
29	Validation of a Novel Microscale Mold Patterning Protocol Based on Gelatin Methacrylate Photopolymerizable Hydrogels. , 2012, , .		0