
Jürgen Herzler

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5151926/publications.pdf Version: 2024-02-01

IÃ1/ DCEN HEDZLED

#	Article	IF	CITATIONS
1	An experimental and detailed chemical kinetic modeling study of hydrogen and syngas mixture oxidation at elevated pressures. Combustion and Flame, 2013, 160, 995-1011.	2.8	589
2	Autoignition of gasoline surrogates mixtures at intermediate temperatures and high pressures. Combustion and Flame, 2008, 152, 276-281.	2.8	131
3	Shock-tube study of the autoignition of n-heptane/toluene/air mixtures at intermediate temperatures and high pressures. Combustion and Flame, 2007, 149, 25-31.	2.8	115
4	Experimental and detailed kinetic model for the oxidation of a Gas to Liquid (GtL) jet fuel. Combustion and Flame, 2014, 161, 835-847.	2.8	111
5	A quantum chemical and kinetics modeling study on the autoignition mechanism of diethyl ether. Proceedings of the Combustion Institute, 2017, 36, 195-202.	2.4	55
6	Oxidation of a Coal-to-Liquid Synthetic Jet Fuel: Experimental and Chemical Kinetic Modeling Study. Energy & Fuels, 2012, 26, 6070-6079.	2.5	50
7	Shock-tube and plug-flow reactor study of the oxidation of fuel-rich CH4/O2 mixtures enhanced with additives. Combustion and Flame, 2016, 169, 307-320.	2.8	45
8	An experimental and modeling study on the reactivity of extremely fuel-rich methane/dimethyl ether mixtures. Combustion and Flame, 2020, 212, 107-122.	2.8	44
9	Shock Tube Study of the Ignition of Lean CO/H ₂ Fuel Blends at Intermediate Temperatures and High Pressure. Combustion Science and Technology, 2008, 180, 2015-2028.	1.2	42
10	Single-Pulse Shock Tube Study of the Decomposition of Tetraethoxysilane and Related Compounds. Journal of Physical Chemistry A, 1997, 101, 5500-5508.	1.1	41
11	Kinetics of the Fe-Atom Condensation Based on Feâ^'Concentration Measurements. Journal of Physical Chemistry A, 2003, 107, 5202-5207.	1.1	33
12	Flexible energy conversion and storage via high-temperature gas-phase reactions: The piston engine as a polygeneration reactor. Renewable and Sustainable Energy Reviews, 2020, 133, 110264.	8.2	31
13	Single-Pulse Shock Tube Studies of the Decomposition of Ethoxy Compounds. Journal of Physical Chemistry A, 1997, 101, 5494-5499.	1.1	23
14	A single-pulse shock tube coupled with high-repetition-rate time-of-flight mass spectrometry and gas chromatography for high-temperature gas-phase kinetics studies. Review of Scientific Instruments, 2016, 87, 105103.	0.6	23
15	Direct Measurement of High-Temperature Rate Constants of the Thermal Decomposition of Dimethoxymethane, a Shock Tube and Modeling Study. Journal of Physical Chemistry A, 2018, 122, 7559-7571.	1.1	21
16	High-pressure shock-tube study of the ignition and product formation of fuel-rich dimethoxymethane (DMM)/air and CH4/DMM/air mixtures. Combustion and Flame, 2020, 216, 293-299.	2.8	19
17	High temperature oxidation of iron atoms by CO2. Physical Chemistry Chemical Physics, 2002, 4, 3665-3668.	1.3	17
18	Highâ€Temperature Rate Constants for H + Tetramethylsilane and H + Silane and Implications about Structure–Activity Relationships for Silanes. International Journal of Chemical Kinetics, 2018, 50, 57-72.	1.0	16

Jürgen Herzler

#	Article	IF	CITATIONS
19	Laser-based CO concentration and temperature measurements in high-pressure shock-tube studies of n-heptane partial oxidation. Applied Physics B: Lasers and Optics, 2020, 126, 1.	1.1	16
20	CO-concentration and temperature measurements in reacting CH4/O2 mixtures doped with diethyl ether behind reflected shock waves. Combustion and Flame, 2020, 216, 194-205.	2.8	16
21	Influence of molecular hydrogen on acetylene pyrolysis: Experiment and modeling. Combustion and Flame, 2014, 161, 2263-2269.	2.8	15
22	A Shock Tube and Modeling Study about Anisole Pyrolysis Using Time-Resolved CO Absorption Measurements. International Journal of Chemical Kinetics, 2017, 49, 656-667.	1.0	15
23	Ethanol ignition in a high-pressure shock tube: Ignition delay time and high-repetition-rate imaging measurements. Proceedings of the Combustion Institute, 2021, 38, 901-909.	2.4	14
24	Experimental Investigation of Ethanol Oxidation and Development of a Reduced Reaction Mechanism for a Wide Temperature Range. Energy & amp; Fuels, 2021, 35, 14780-14792.	2.5	14
25	Shock-tube study of the decomposition of tetramethylsilane using gas chromatography and high-repetition-rate time-of-flight mass spectrometry. Physical Chemistry Chemical Physics, 2018, 20, 10686-10696.	1.3	13
26	Alternative Fuels Based on Biomass: An Investigation of Combustion Properties of Product Gases. Journal of Engineering for Gas Turbines and Power, 2013, 135, .	0.5	12
27	High-Temperature Unimolecular Decomposition of Diethyl Ether: Shock-Tube and Theory Studies. Journal of Physical Chemistry A, 2019, 123, 6813-6827.	1.1	12
28	Alternative Fuels Based on Biomass: An Experimental and Modeling Study of Ethanol Cofiring to Natural Gas. Journal of Engineering for Gas Turbines and Power, 2015, 137, .	0.5	11
29	Monitoring formaldehyde in a shock tube with a fast dual-comb spectrometer operating in the spectral range of 1740–1790Âcm–1. Applied Physics B: Lasers and Optics, 2020, 126, 1.	1.1	11
30	Pyrolysis of diethyl carbonate: Shock-tube and flow-reactor measurements and modeling. Proceedings of the Combustion Institute, 2021, 38, 987-996.	2.4	10
31	Determination of gas-phase absorption cross-sections of FeO in a shock tube using intracavity absorption spectroscopy near 611†nm. Proceedings of the Combustion Institute, 2021, 38, 1637-1645.	2.4	8
32	Shock tube study of the reaction of H atoms with SnCl4. Physical Chemistry Chemical Physics, 2002, 4, 5259-5264.	1.3	6
33	High temperature gas phase reaction of SnOg with O2. Physical Chemistry Chemical Physics, 2003, 5, 1552.	1.3	6
34	Shock-tube study of the decomposition of octamethylcyclotetrasiloxane and hexamethylcyclotrisiloxane. Zeitschrift Fur Physikalische Chemie, 2020, 234, 1395-1426.	1.4	6
35	The influence of selected aromatic fluorescence tracers on the combustion kinetics of iso-octane. Fuel, 2019, 244, 559-568.	3.4	5
36	Studying the influence of single droplets on fuel/air ignition in a high-pressure shock tube. Review of Scientific Instruments, 2020, 91, 105107.	0.6	5

Jürgen Herzler

#	Article	IF	CITATIONS
37	Kinetics of the Thermal Decomposition of Ethylsilane: Shock-Tube and Modeling Study. Energy & Fuels, 2021, 35, 3266-3282.	2.5	5
38	Shock-tube study of the influence of oxygenated additives on benzene pyrolysis: Measurement of optical densities, soot inception times and comparison with simulations. Combustion and Flame, 2022, 243, 111985.	2.8	5
39	Alternative Fuels Based on Biomass: An Investigation of Combustion Properties of Product Gases. , 2012, , .		1
40	Alternative Fuels Based on Biomass: An Experimental and Modeling Study of Ethanol Co-Firing to Natural Gas. , 2014, , .		1
41	An Investigation of Combustion Properties of a Gasoline Primary Reference Fuel Surrogate Blended With Butanol. , 2019, , .		1
42	Shock wave kinetics of Fe + NO based on Fe, O, and N atom measurements. Shock Waves, 2006, 16, 119-123.	1.0	0