Anusha Priyadarshani Silva Hettiyadura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5151891/publications.pdf

Version: 2024-02-01

623574 794469 19 656 14 19 citations h-index g-index papers 19 19 19 899 docs citations citing authors all docs times ranked

#	Article	IF	Citations
1	Formation of Secondary Brown Carbon in Biomass Burning Aerosol Proxies through NO ₃ Radical Reactions. Environmental Science & Environmental	4.6	96
2	Qualitative and quantitative analysis of atmospheric organosulfates in Centreville, Alabama. Atmospheric Chemistry and Physics, 2017, 17, 1343-1359.	1.9	75
3	Organosulfates in Atlanta, Georgia: anthropogenic influences on biogenic secondary organic aerosol formation. Atmospheric Chemistry and Physics, 2019, 19, 3191-3206.	1.9	68
4	Chemical Composition and Molecular-Specific Optical Properties of Atmospheric Brown Carbon Associated with Biomass Burning. Environmental Science & En	4.6	58
5	Water Uptake and Hygroscopic Growth of Organosulfate Aerosol. Environmental Science & Science & Technology, 2016, 50, 4259-4268.	4.6	54
6	Response of the Aerodyne Aerosol Mass Spectrometer to Inorganic Sulfates and Organosulfur Compounds: Applications in Field and Laboratory Measurements. Environmental Science & Emp; Technology, 2019, 53, 5176-5186.	4.6	41
7	Photosensitized Reactions of a Phenolic Carbonyl from Wood Combustion in the Aqueous Phaseâ€"Chemical Evolution and Light Absorption Properties of AqSOA. Environmental Science & Technology, 2021, 55, 5199-5211.	4.6	36
8	Source apportionment of fine particulate matter in Houston, Texas: insights to secondary organic aerosols. Atmospheric Chemistry and Physics, 2018, 18, 15601-15622.	1.9	34
9	Humidity-Dependent Viscosity of Secondary Organic Aerosol from Ozonolysis of \hat{l}^2 -Caryophyllene: Measurements, Predictions, and Implications. ACS Earth and Space Chemistry, 2021, 5, 305-318.	1.2	32
10	Molecular Composition and the Optical Properties of Brown Carbon Generated by the Ethane Flame. ACS Earth and Space Chemistry, 2020, 4, 1090-1103.	1.2	24
11	Molecular Analysis of Secondary Brown Carbon Produced from the Photooxidation of Naphthalene. Environmental Science & Environm	4.6	22
12	Optical Properties of Secondary Organic Aerosol Produced by Photooxidation of Naphthalene under NOx Condition. Environmental Science & Environmental S	4.6	20
13	Molecular Characterization of Water-Soluble Brown Carbon Chromophores in Snowpack from Northern Xinjiang, China. Environmental Science & Echnology, 2022, 56, 4173-4186.	4.6	17
14	Regional Differences of Chemical Composition and Optical Properties of Aerosols in the Tibetan Plateau. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031226.	1.2	16
15	Measurement report: Molecular composition, optical properties, and radiative effects of water-soluble organic carbon in snowpack samples from northern Xinjiang, China. Atmospheric Chemistry and Physics, 2021, 21, 8531-8555.	1.9	15
16	Molecular-Level Study of the Photo-Oxidation of Aqueous-Phase Guaiacyl Acetone in the Presence of ³ C*: Formation of Brown Carbon Products. ACS Earth and Space Chemistry, 2021, 5, 1983-1996.	1.2	15
17	Viscosity and liquid–liquid phase separation in healthy and stressed plant SOA. Environmental Science Atmospheres, 2021, 1, 140-153.	0.9	14
18	Quantitative analysis of polycyclic aromatic hydrocarbons using highâ€performance liquid chromatographyâ€photodiode arrayâ€highâ€resolution mass spectrometric detection platform coupled to electrospray and atmospheric pressure photoionization sources. Journal of Mass Spectrometry, 2022, 57, e4804.	0.7	10

#	Article	IF	CITATIONS
19	Atmospheric Brown Carbon on the Tibetan Plateau: Regional Differences in Chemical Composition and Light Absorption Properties. Environmental Science and Technology Letters, 2022, 9, 219-225.	3.9	9