MarÃ-a Luisa FernÃ;ndez-Gubieda Ruiz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/515189/publications.pdf

Version: 2024-02-01

all docs

 120
 2,229
 25
 43

 papers
 citations
 h-index
 g-index

 121
 121
 121
 2741

docs citations

236833

times ranked

254106

citing authors

#	Article	IF	Citations
1	Structure and Magnetic Properties of Thin Permalloy Films Near the "Transcritical―State. IEEE Transactions on Magnetics, 2010, 46, 333-336.	1.2	114
2	Electrochemical Na Extraction/Insertion of Na ₃ V ₂ Given: Na ₃ V ₅ Given: Na ₆ 9667899<	<b sub>.	112
3	Sodium Distribution and Reaction Mechanisms of a Na ₃ V ₂ O ₂ (PO ₄) ₂ F Electrode during Use in a Sodium-Ion Battery. Chemistry of Materials, 2014, 26, 3391-3402.	3.2	112
4	Magnetite Biomineralization in Magnetospirillum gryphiswaldense: Time-Resolved Magnetic and Structural Studies. ACS Nano, 2013, 7, 3297-3305.	7.3	107
5	Anisotropy effects in magnetic hyperthermia: A comparison between spherical and cubic exchange-coupled FeO/Fe3O4 nanoparticles. Journal of Applied Physics, 2015, 117, .	1.1	103
6	Optimal Parameters for Hyperthermia Treatment Using Biomineralized Magnetite Nanoparticles: Theoretical and Experimental Approach. Journal of Physical Chemistry C, 2016, 120, 24437-24448.	1.5	94
7	Interplay between microstructure and magnetism in NiO nanoparticles: breakdown of the antiferromagnetic order. Nanoscale, 2014, 6, 457-465.	2.8	90
8	Unlocking the Potential of Magnetotactic Bacteria as Magnetic Hyperthermia Agents. Small, 2019, 15, e1902626.	5.2	79
9	Crossover from superspin glass to superferromagnet inFexAg100â°'xnanostructured thin films(20â‰ x â‰ 5 0). Physical Review B, 2010, 82, .	1.1	68
10	Ni Doped Fe ₃ O ₄ Magnetic Nanoparticles. Journal of Nanoscience and Nanotechnology, 2012, 12, 2652-2660.	0.9	55
11	Tensile stress dependence of the Curie temperature and hyperfine field in Fe-Zr-B-(Cu) amorphous alloys. Physical Review B, 1996, 54, 3026-3029.	1.1	50
12	FeNi-based magnetoimpedance multilayers: Tailoring of the softness by magnetic spacers. Applied Physics Letters, 2012, 100, .	1.5	47
13	Configuration of the magnetosome chain: a natural magnetic nanoarchitecture. Nanoscale, 2018, 10, 7407-7419.	2.8	47
14	Magnetotactic bacteria for cancer therapy. Journal of Applied Physics, 2020, 128, .	1.1	37
15	Local structure and ferromagnetic character of Fe-B and Fe-P amorphous alloys. Physical Review B, 2000, 62, 5746-5750.	1.1	36
16	Preparation and characterisation of Cu–Co heterogeneous alloys by potentiostatic electrodeposition. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2002, 335, 94-100.	2.6	36
17	Microstructural and magnetic evolution upon annealing of giant magnetoresistance melt-spun Co-Cu granular alloys. Physical Review B, 2003, 67, .	1.1	35
18	Enhanced mass sensitivity in novel magnetoelastic resonators geometries for advanced detection systems. Sensors and Actuators B: Chemical, 2019, 296, 126612.	4.0	32

#	Article	IF	CITATIONS
19	Disk-shaped magnetic particles for cancer therapy. Applied Physics Reviews, 2020, 7, .	5.5	32
20	Magnetic and transport properties of Fe - Zr - B - (Cu) amorphous alloys. Journal of Physics Condensed Matter, 1997, 9, 5671-5685.	0.7	31
21	A Milestone in the Chemical Synthesis of Fe ₃ O ₄ Nanoparticles: Unreported Bulklike Properties Lead to a Remarkable Magnetic Hyperthermia. Chemistry of Materials, 2021, 33, 8693-8704.	3.2	31
22	Magnetic and Mossbauer study of amorphous and nanocrystalline Fe/sub 86/Zr/sub 7/Cu/sub 1/B/sub 6/alloys. IEEE Transactions on Magnetics, 1993, 29, 2682-2684.	1.2	30
23	Enhanced magnetic anisotropy and heating efficiency in multi-functional manganese ferrite/graphene oxide nanostructures. Nanotechnology, 2016, 27, 155707.	1.3	30
24	Magnetization reversal in circular vortex dots of small radius. Nanoscale, 2017, 9, 11269-11278.	2.8	29
25	Highly Reproducible Hyperthermia Response in Water, Agar, and Cellular Environment by Discretely PEGylated Magnetite Nanoparticles. ACS Applied Materials & Samp; Interfaces, 2020, 12, 27917-27929.	4.0	27
26	Size-induced superantiferromagnetism with reentrant spin-glass behavior in metallic nanoparticles of TbCu2. Physical Review B, 2013, 87, .	1.1	26
27	Mn-Doping level dependence on the magnetic response of MnxFe3â^'xO4 ferrite nanoparticles. Dalton Transactions, 2019, 48, 11480-11491.	1.6	26
28	Correlation between structure and magnetic behavior of Fe-P amorphous alloys. Physical Review B, 1995, 52, 12805-12812.	1.1	25
29	On the mineral core of ferritin-like proteins: structural and magnetic characterization. Nanoscale, 2016, 8, 1088-1099.	2.8	25
30	Temperature dependence of the Mössbauer spectra of amorphous and nanocrystallized Fe86Zr7Cu1B6. Hyperfine Interactions, 1994, 94, 2199-2205.	0.2	24
31	Interfacial magnetic coupling between Fe nanoparticles in Fe–Ag granular alloys. Nanotechnology, 2012, 23, 025705.	1.3	24
32	Magnetic Study of Co-Doped Magnetosome Chains. Journal of Physical Chemistry C, 2018, 122, 7541-7550.	1.5	24
33	High-magnetic field characterization of magnetocaloric effect in FeZrB(Cu) amorphous ribbons. Journal of Applied Physics, 2015, 117, .	1.1	23
34	Influence of the bacterial growth phase on the magnetic properties of magnetosomes synthesized by Magnetospirillum gryphiswaldense. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 1507-1514.	1.1	23
35	Evidence of strong short-range order in (Fe0.2Co0.8)75SixB25â^'xamorphous alloys from EXAFS spectroscopy. Physical Review B, 1996, 53, 620-628.	1.1	22
36	-Interface effects on the magnetic moment of Co and Cu in CoCu granular alloys. Physical Review B, 2005, 72, .	1.1	22

#	Article	IF	Citations
37	Annealing influence on the atomic ordering and magnetic moment in a Ni–Mn–Ga alloy. Journal of Magnetism and Magnetic Materials, 2007, 316, e610-e613.	1.0	20
38	Shaping Up Zn-Doped Magnetite Nanoparticles from Mono- and Bimetallic Oleates: The Impact of Zn Content, Fe Vacancies, and Morphology on Magnetic Hyperthermia Performance. Chemistry of Materials, 2021, 33, 3139-3154.	3.2	19
39	Structural evolution of Co clusters in Co15Cu85 granular alloys by EXAFS spectroscopy. Journal of Magnetism and Magnetic Materials, 2000, 221, 80-86.	1.0	18
40	XAS and XMCD study of the influence of annealing on the atomic ordering and magnetism in an NiMnGa alloy. Journal of Physics Condensed Matter, 2009, 21, 016002.	0.7	18
41	Assemblies of magnetite nanoparticles extracted from magnetotactic bacteria: A magnetic study. Applied Physics Letters, 2016, 108, .	1.5	18
42	Magnetosomes could be protective shields against metal stress in magnetotactic bacteria. Scientific Reports, 2020, 10, 11430.	1.6	18
43	Magnetostatic interactions in various magnetosome clusters. Journal of Applied Physics, 2013, 113, 023907.	1.1	17
44	Magnetic phase diagram of superantiferromagnetic TbCu2nanoparticles. Journal of Physics Condensed Matter, 2015, 27, 496002.	0.7	15
45	Elucidating the role of shape anisotropy in faceted magnetic nanoparticles using biogenic magnetosomes as a model. Nanoscale, 2020, 12, 16081-16090.	2.8	15
46	Influence of the short-range order on the magnetic properties of metallic glasses. Journal of Physics Condensed Matter, 1998, 10, 3807-3822.	0.7	14
47	Direct experimental evidence of an anomalous Co segregation in Co-Cu granular alloys and its influence on magnetoresistance. Europhysics Letters, 2002, 59, 855-861.	0.7	14
48	Comparative study of the structure and magnetic properties of Co-P and Fe-P amorphous alloys. Physical Review B, 2000, 61, 6238-6245.	1.1	13
49	Magnetic disorder in diluted Fe _{<i>x</i>} M _{100â^'<i>x</i>} granular thin films (M=Au, Ag, Cu; <i>x</i> < 10 at.%). Journal of Physics Condensed Matter, 2013, 25, 276001.	0.7	13
50	Properties of Dense Assemblies of Magnetic Nanoparticles Promising for Application in Biomedicine. Journal of Superconductivity and Novel Magnetism, 2013, 26, 1079-1083.	0.8	13
51	Medium-range order as an intrinsic property of Co-rich amorphous alloys. Europhysics Letters, 1997, 40, 43-48.	0.7	12
52	Microstructure and magnetic properties of colloidal cobalt nano-clusters. Journal of Magnetism and Magnetic Materials, 2010, 322, 3565-3571.	1.0	11
53	Breakdown of magnetism in sub-nanometric Ni clusters embedded in Ag. Nanotechnology, 2015, 26, 455703.	1.3	11
54	Probing the stability and magnetic properties of magnetosome chains in freeze-dried magnetotactic bacteria. Nanoscale Advances, 2020, 2, 1115-1121.	2.2	11

#	Article	IF	Citations
55	Simultaneous observation of viscoelastic deformation and induced magnetic anisotropy in [Co1â°x(FeNi)x]75Si15B10metallic glasses. Journal of Applied Physics, 1987, 62, 2579-2582.	1.1	10
56	Influence of the interface on the magnetic anisotropy of CoCu granular alloys. Physica B: Condensed Matter, 2004, 354, 92-97.	1.3	10
57	Magnetic nanoscopic correlations in the crossover between a superspin glass and a superferromagnet. Journal of Applied Physics, 2016, 119, .	1.1	10
58	Investigating the Size and Microstrain Influence in the Magnetic Order/Disorder State of GdCu2 Nanoparticles. Nanomaterials, 2020, 10, 1117.	1.9	10
59	Stress and annealing induced changes in the Curie temperature of amorphous and nanocrystalline FeZr and FeNb based alloys. Journal of Magnetism and Magnetic Materials, 1996, 157-158, 203-204.	1.0	9
60	Controlled Magnetic Anisotropy in Single Domain Mn-doped Biosynthesized Nanoparticles. Journal of Physical Chemistry C, 2020, 124, 22827-22838.	1.5	9
61	Nanoflowers Versus Magnetosomes: Comparison Between Two Promising Candidates for Magnetic Hyperthermia Therapy. IEEE Access, 2021, 9, 99552-99561.	2.6	9
62	Structure and magnetic properties of Feî—,Coî—,P amorphous alloys. Journal of Magnetism and Magnetic Materials, 1999, 196-197, 164-165.	1.0	7
63	Influence of the preparation method on the properties of Cu–Co heterogeneous alloys. Journal of Non-Crystalline Solids, 2001, 287, 26-30.	1.5	7
64	Nitrogen incorporation effects in Fe(001) thin films. Journal of Applied Physics, 2001, 89, 6314-6319.	1.1	7
65	Neutron and synchrotron studies of structure and magnetism of Shape Memory Alloys. Journal of Physics: Conference Series, 2015, 663, 012014.	0.3	7
66	Studying nanoparticles' 3D shape by aspect maps: Determination of the morphology of bacterial magnetic nanoparticles. Faraday Discussions, 2016, 191, 177-188.	1.6	7
67	Feâ€57 Mössbauer study of the (FeCo)75SiB metallic alloy series. Journal of Applied Physics, 1995, 77, 3338-3342.	1.1	6
68	The effect of the deposition parameters on the magnetic and magnetotransport properties of laser ablated Cuâ€"Co thin films. Sensors and Actuators A: Physical, 2003, 106, 203-207.	2.0	6
69	Magnetic and magnetotransport properties of Fe nanoparticles embedded in Ag matrix. Journal of Magnetism and Magnetic Materials, 2005, 290-291, 1071-1074.	1.0	6
70	X-ray absorption analysis of core/shell magnetic (Fe,Co)–B nanoparticles of amorphous and crystalline structure obtained by chemical reduction. Journal of Non-Crystalline Solids, 2007, 353, 733-737.	1.5	6
71	Correlation among the structural and magnetic properties of CoCu granular alloys. Journal of Applied Physics, 2002, 91, 8596.	1.1	5
72	Synthesis and characterisation of electrodeposited Cu90Co10 thin film. Journal of Magnetism and Magnetic Materials, 2003, 254-255, 85-87.	1.0	4

#	Article	IF	Citations
73	Surfactant-assisted production of TbCu2 nanoparticles. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	4
74	Towards the design of contrast-enhanced agents: systematic Ga ³⁺ doping on magnetite nanoparticles. Dalton Transactions, 2022, 51, 2517-2530.	1.6	4
75	Magnetic Anisotropy of Individual Nanomagnets Embedded in Biological Systems Determined by Axi-asymmetric X-ray Transmission Microscopy. ACS Nano, 2022, 16, 7398-7408.	7.3	4
76	Magnetic study of electrodeposited Cuî—,Co heterogeneous alloys. Journal of Magnetism and Magnetic Materials, 1999, 196-197, 53-55.	1.0	3
77	Different ferromagnetic character of Fe in FeB and FeP amorphous alloys. Journal of Magnetism and Magnetic Materials, 1999, 196-197, 204-206.	1.0	3
78	Structure and magnetic properties in CoCu granular alloys. Nuclear Instruments & Methods in Physics Research B, 2003, 200, 215-219.	0.6	3
79	Magnetic relaxation in melt-spun amorphous and nanocrystalline Mn-doped nanocrystalline alloy. Journal of Magnetism and Magnetic Materials, 2007, 310, 2466-2468.	1.0	3
80	Influence of the Si Substrate on the Transport and Magnetotransport Properties of Nanostructured Fe-Ag Thin Films. IEEE Transactions on Magnetics, 2008, 44, 2784-2787.	1.2	3
81	Influence of the interface on the electronic channel switching of a Fe–Ag thin film on a Si substrate. Applied Physics Letters, 2009, 95, .	1.5	3
82	Collective magnetic behaviors of Fe–Ag nanostructured thin films above the percolation limit. Journal of Applied Physics, 2009, 105, 07B513.	1.1	3
83	Effects of thermal annealing on the magnetic interactions in nanogranular Fe–Ag thin films. Journal of Alloys and Compounds, 2012, 536, S271-S276.	2.8	3
84	On the exchange bias effect in NiO nanoparticles with a core(antiferromagnetic)/shell (spin glass) morphology. Journal of Physics: Conference Series, 2015, 663, 012001.	0.3	3
85	Search for Magnetite Nanoparticles in the Rats' Brain. IEEE Transactions on Magnetics, 2015, 51, 1-3.	1.2	3
86	Magnetocaloric properties of rapidly solidified Dy3Co alloy ribbons. Journal of Applied Physics, 2015, 117, 17A706.	1.1	3
87	Study of the influence of sensor permeability in the detection of a single magnetotactic bacterium. Journal of Magnetism and Magnetic Materials, 2020, 500, 166346.	1.0	3
88	Modifying the magnetic response of magnetotactic bacteria: incorporation of Gd and Tb ions into the magnetosome structure. Nanoscale Advances, 2022, 4, 2649-2659.	2.2	3
89	Influence of metalloids on the XANES spectra of metallic glasses. Journal of Non-Crystalline Solids, 2001, 287, 60-64.	1.5	2
90	The local structure from two experimental atomic probes: EXAFS and Mössbauer spectroscopies. Journal of Non-Crystalline Solids, 2001, 287, 75-80.	1.5	2

#	Article	IF	CITATIONS
91	Observation of the segregation and the dissolution of the Co and the Cu in CoCu metastable alloys. Journal of Synchrotron Radiation, 2001, 8, 883-885.	1.0	2
92	The properties of Co–Cu melt-spun ribbons and thin films: similarity and difference. Journal of Magnetism and Magnetic Materials, 2003, 254-255, 115-117.	1.0	2
93	Time-resolved X-ray diffraction experiments during annealing of Co15Cu85 granular alloy. Journal of Magnetism and Magnetic Materials, 2003, 262, 92-96.	1.0	2
94	Relationship between the nanostructure of Co15Cu85 melt-spun alloys and the AC-susceptibility behaviour. Journal of Magnetism and Magnetic Materials, 2003, 262, 97-101.	1.0	2
95	Microstructure studies through the analysis of the hysteresis loop in granular alloys. Physica B: Condensed Matter, 2004, 343, 364-368.	1.3	2
96	Magnetic and magnetotransport behavior of granular FexAg100â^'x thin films. Journal of Non-Crystalline Solids, 2007, 353, 944-946.	1.5	2
97	Magnetic Hyperthermia: Unlocking the Potential of Magnetotactic Bacteria as Magnetic Hyperthermia Agents (Small 41/2019). Small, 2019, 15, 1970222.	5.2	2
98	Mossbauer study of amorphous (FeTM)/sub 80/B/sub 20/. IEEE Transactions on Magnetics, 1994, 30, 536-538.	1.2	1
99	Differential anomalous scattering on Fe-Co-based metallic glasses. Journal of Physics Condensed Matter, 1999, 11, 10199-10210.	0.7	1
100	X-ray magnetic circular dichroism in FeZrB amorphous alloys: the influence of the tensile stress. Journal of Synchrotron Radiation, 2001, 8, 443-445.	1.0	1
101	Influence of the interface on the magnetic moment of Co clusters in CoCu granular alloys. IEEE Transactions on Magnetics, 2005, 41, 3421-3423.	1.2	1
102	The role of the interface on the magnetic behaviour of granular Fe50Ag50 film. Journal of Magnetism and Magnetic Materials, 2007, 310, 2510-2512.	1.0	1
103	Ferromagnetic resonance study of granular film. Journal of Magnetism and Magnetic Materials, 2007, 316, e59-e62.	1.0	1
104	Poly(methyl methacrylate) Coating of Soft Magnetic Amorphous and Crystalline Fe,Co-B Nanoparticles by Chemical Reduction. Journal of Nanoscience and Nanotechnology, 2012, 12, 1843-1851.	0.9	1
105	Influence of the Interactions on the Magnetotransport Properties of Fe–Ag Granular Thin Films. Journal of Nanoscience and Nanotechnology, 2012, 12, 7473-7476.	0.9	1
106	Magnetostrictive Properties of Polymer-Bonded Terfenol-D Composites. Sensor Letters, 2007, 5, 23-25.	0.4	1
107	Observation of a Strong Short Range Order in Co Rich Amorphous Alloys Prepared by Different Methods. European Physical Journal Special Topics, 1997, 7, C2-995-C2-996.	0.2	1
108	MOSSBAUER SPECTROSCOPY IN Fe RICH AMORPHOUS ALLOYS. Journal De Physique Colloque, 1988, 49, C8-1367-C8-1368.	0.2	0

#	Article	IF	CITATIONS
109	Magnetization evolution during thermal treatments of CoCu metastable alloys. Journal of Non-Crystalline Solids, 2001, 287, 282-285.	1.5	0
110	Title is missing!. Russian Physics Journal, 2002, 45, 1181-1189.	0.2	0
111	In situ observation of the structural changes induced by thermal annealing on melt-spun Co15Cu85 granular alloys. Journal of Magnetism and Magnetic Materials, 2003, 254-255, 82-84.	1.0	0
112	Magnetotransport properties and local atomic order around Fe in Fe30Ag70 thin films. Journal of Magnetism and Magnetic Materials, 2004, 272-276, E1397-E1398.	1.0	0
113	Magnetostrictive and mechanical properties of Terfenol-D composites based on polymer. Proceedings of SPIE, 2007, , .	0.8	0
114	Correction to "Influence of the Si Substrate on the Transport and Magnetotransport Properties of Nanostructured Fe-Ag Thin Films―[Nov 09 2784-2787]. IEEE Transactions on Magnetics, 2009, 45, 3365-3365.	1.2	0
115	Magnetic disorder in nanostructured <i>Fe</i> ₇ <i>Au</i> ₉₃ films and <i>Fe</i> ₁₄ <i>Au</i> ₈₆ powders. Journal of Physics: Conference Series, 2010, 200, 072028.	0.3	0
116	Magnetic properties of colloidal cobalt nanoclusters. Journal of Physics: Conference Series, 2010, 200, 072100.	0.3	0
117	Study of surface effects on CoCu nanogranular alloys by ferromagnetic resonance. Journal of Applied Physics, 2012, 111, 07C105.	1.1	0
118	EXAFS and MÃ \P ssbauer Study of the Crystallization of Fe ₉₁ Zr ₉ Metallic Glass. European Physical Journal Special Topics, 1997, 7, C2-1125-C2-1126.	0.2	0
119	Influence of the Structure in Magnetic Properties in Co-P Electrodeposited Amorphous Alloys. European Physical Journal Special Topics, 1997, 7, C2-997-C2-998.	0.2	0
120	Correction to "Magnetic Study of Co-Doped Magnetosome Chains― Journal of Physical Chemistry C, O,	1.5	0