Paul A Dayton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5151753/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Experimental and theoretical evaluation of microbubble behavior: effect of transmitted phase and bubble size. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2000, 47, 1494-1509.	3.0	346
2	The magnitude of radiation force on ultrasound contrast agents. Journal of the Acoustical Society of America, 2002, 112, 2183-2192.	1.1	270
3	Formulation and Acoustic Studies of a New Phase-Shift Agent for Diagnostic and Therapeutic Ultrasound. Langmuir, 2011, 27, 10412-10420.	3.5	264
4	Optical and acoustical observations of the effects of ultrasound on contrast agents. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1999, 46, 220-232.	3.0	263
5	Ultrasound radiation force enables targeted deposition of model drug carriers loaded on microbubbles. Journal of Controlled Release, 2006, 111, 128-134.	9.9	253
6	Super-resolution Ultrasound Imaging. Ultrasound in Medicine and Biology, 2020, 46, 865-891.	1.5	253
7	On-chip generation of microbubbles as a practical technology for manufacturing contrast agents for ultrasonic imaging. Lab on A Chip, 2007, 7, 463.	6.0	248
8	Influence of lipid shell physicochemical properties on ultrasound-induced microbubble destruction. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52, 1992-2002.	3.0	240
9	Targeted imaging using ultrasound. Journal of Magnetic Resonance Imaging, 2002, 16, 362-377.	3.4	237
10	Noninvasive Imaging of Inflammation by Ultrasound Detection of Phagocytosed Microbubbles. Circulation, 2000, 102, 531-538.	1.6	231
11	Design of ultrasonically-activatable nanoparticles using low boiling point perfluorocarbons. Biomaterials, 2012, 33, 3262-3269.	11.4	217
12	Acoustically-active microbubbles conjugated to liposomes: Characterization of a proposed drug delivery vehicle. Journal of Controlled Release, 2007, 118, 275-284.	9.9	216
13	Decafluorobutane as a Phase-Change Contrast Agent for Low-Energy Extravascular Ultrasonic Imaging. Ultrasound in Medicine and Biology, 2011, 37, 1518-1530.	1.5	208
14	Phase-Change Contrast Agents for Imaging and Therapy. Current Pharmaceutical Design, 2012, 18, 2152-2165.	1.9	205
15	3-D Ultrasound Localization Microscopy for Identifying Microvascular Morphology Features of Tumor Angiogenesis at a Resolution Beyond the Diffraction Limit of Conventional Ultrasound. Theranostics, 2017, 7, 196-204.	10.0	202
16	Optical observation of lipid- and polymer-shelled ultrasound microbubble contrast agents. Applied Physics Letters, 2004, 84, 631-633.	3.3	194
17	Direct observations of ultrasound microbubble contrast agent interaction with the microvessel wall. Journal of the Acoustical Society of America, 2007, 122, 1191-1200.	1.1	192
18	Radiation-Force Assisted Targeting Facilitates Ultrasonic Molecular Imaging. Molecular Imaging, 2004, 3, 135-148.	1.4	159

#	Article	IF	CITATIONS
19	Imaging with ultrasound contrast agents: current status and future. Abdominal Radiology, 2018, 43, 762-772.	2.1	151
20	Molecular ultrasound imaging using microbubble contrast agents. Frontiers in Bioscience - Landmark, 2007, 12, 5124.	3.0	139
21	Optical observation of contrast agent destruction. Applied Physics Letters, 2000, 77, 1056.	3.3	134
22	Optical and Acoustical Dynamics of Microbubble Contrast Agents inside Neutrophils. Biophysical Journal, 2001, 80, 1547-1556.	0.5	133
23	Acoustic Angiography: A New Imaging Modality for Assessing Microvasculature Architecture. International Journal of Biomedical Imaging, 2013, 2013, 1-9.	3.9	126
24	Targeted drug delivery with focused ultrasound-induced blood-brain barrier opening using acoustically-activated nanodroplets. Journal of Controlled Release, 2013, 172, 795-804.	9.9	121
25	Lateral Phase Separation in Lipid-Coated Microbubbles. Langmuir, 2006, 22, 4291-4297.	3.5	119
26	Current status and prospects for microbubbles in ultrasound theranostics. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2013, 5, 329-345.	6.1	115
27	Ultrasonic Analysis of Peptide- and Antibody-Targeted Microbubble Contrast Agents for Molecular Imaging of α _v β ₃ -Expressing Cells. Molecular Imaging, 2004, 3, 125-134.	1.4	115
28	Phase-Change Nanoparticles Using Highly Volatile Perfluorocarbons: Toward a Platform for Extravascular Ultrasound Imaging. Theranostics, 2012, 2, 1185-1198.	10.0	114
29	Modeling of nonlinear viscous stress in encapsulating shells of lipid-coated contrast agent microbubbles. Ultrasonics, 2009, 49, 269-275.	3.9	113
30	Tailoring the Size Distribution of Ultrasound Contrast Agents: Possible Method for Improving Sensitivity in Molecular Imaging. Molecular Imaging, 2007, 6, 7290.2007.00034.	1.4	109
31	Advances in Molecular Imaging with Ultrasound. Molecular Imaging, 2010, 9, 7290.2010.00022.	1.4	108
32	Improving Sensitivity in Ultrasound Molecular Imaging by Tailoring Contrast Agent Size Distribution: In Vivo Studies. Molecular Imaging, 2010, 9, 7290.2010.00005.	1.4	107
33	Mapping Microvasculature with Acoustic Angiography Yields Quantifiable Differences between Healthy and Tumor-bearing Tissue Volumes in a Rodent Model. Radiology, 2012, 264, 733-740.	7.3	104
34	Quantification of Microvascular Tortuosity during Tumor Evolution Using Acoustic Angiography. Ultrasound in Medicine and Biology, 2015, 41, 1896-1904.	1.5	104
35	Application of Ultrasound to Selectively Localize Nanodroplets for Targeted Imaging and Therapy. Molecular Imaging, 2006, 5, 7290.2006.00019.	1.4	103
36	A stimulus-responsive contrast agent for ultrasound molecular imaging. Biomaterials, 2008, 29, 597-606.	11.4	103

#	Article	IF	CITATIONS
37	Maintaining Monodispersity in a Microbubble Population Formed by Flow-Focusing. Langmuir, 2008, 24, 1745-1749.	3.5	102
38	Therapeutic gas delivery via microbubbles and liposomes. Journal of Controlled Release, 2015, 209, 139-149.	9.9	100
39	Contrast-Enhanced Ultrasound Imaging and inÂVivo Circulatory Kinetics with Low-Boiling-Point Nanoscale Phase-Change Perfluorocarbon Agents. Ultrasound in Medicine and Biology, 2015, 41, 814-831.	1.5	100
40	Long-Term Stability by Lipid Coating Monodisperse Microbubbles Formed by a Flow-Focusing Device. Langmuir, 2006, 22, 9487-9490.	3.5	99
41	High-resolution, high-contrast ultrasound imaging using a prototype dual-frequency transducer: In vitro and in vivo studies. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2010, 57, 1772-1781.	3.0	97
42	Effect of anesthesia carrier gas on <i>in vivo</i> circulation times of ultrasound microbubble contrast agents in rats. Contrast Media and Molecular Imaging, 2011, 6, 126-131.	0.8	94
43	Ultra-long-acting tunable biodegradable and removable controlled release implants for drug delivery. Nature Communications, 2019, 10, 4324.	12.8	92
44	Quantitative Volumetric Perfusion Mapping of the Microvasculature Using Contrast Ultrasound. Investigative Radiology, 2010, 45, 669-674.	6.2	88
45	Imaging of angiogenesis using Cadenceâ,,¢ contrast pulse sequencing and targeted contrast agents. Contrast Media and Molecular Imaging, 2008, 3, 9-18.	0.8	87
46	Maxwell rheological model for lipid-shelled ultrasound microbubble contrast agents. Journal of the Acoustical Society of America, 2007, 121, 3331.	1.1	83
47	Resonance frequencies of lipid-shelled microbubbles in the regime of nonlinear oscillations. Ultrasonics, 2009, 49, 263-268.	3.9	82
48	Phase-transition thresholds and vaporization phenomena for ultrasound phase-change nanoemulsions assessed via high-speed optical microscopy. Physics in Medicine and Biology, 2013, 58, 4513-4534.	3.0	81
49	A preliminary engineering design of intravascular dual-frequency transducers for contrast-enhanced acoustic angiography and molecular imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2014, 61, 870-880.	3.0	81
50	Theranostic Oxygen Delivery Using Ultrasound and Microbubbles. Theranostics, 2012, 2, 1174-1184.	10.0	79
51	Dual-Frequency Piezoelectric Transducers for Contrast Enhanced Ultrasound Imaging. Sensors, 2014, 14, 20825-20842.	3.8	78
52	Asymmetric oscillation of adherent targeted ultrasound contrast agents. Applied Physics Letters, 2005, 87, 134103.	3.3	77
53	High-intensity focused ultrasound ablation enhancement in vivo via phase-shift nanodroplets compared to microbubbles. Journal of Therapeutic Ultrasound, 2015, 3, 7.	2.2	77
54	Precision mouse models with expanded tropism for human pathogens. Nature Biotechnology, 2019, 37, 1163-1173.	17.5	76

#	Article	IF	CITATIONS
55	Ultrasound Radiation Force Modulates Ligand Availability on Targeted Contrast Agents. Molecular Imaging, 2006, 5, 7290.2006.00016.	1.4	74
56	Phase-shift perfluorocarbon agents enhance high intensity focused ultrasound thermal delivery with reduced near-field heating. Journal of the Acoustical Society of America, 2013, 134, 1473-1482.	1.1	73
57	Microbubble oscillation in tubes with diameters of 12, 25, and 195 microns. Applied Physics Letters, 2006, 88, 033902.	3.3	71
58	Phase change events of volatile liquid perfluorocarbon contrast agents produce unique acoustic signatures. Physics in Medicine and Biology, 2014, 59, 379-401.	3.0	71
59	Controllable microfluidic synthesis of multiphase drug arrying lipospheres for siteâ€ŧargeted therapy. Biotechnology Progress, 2009, 25, 938-945.	2.6	68
60	Microbubble mediated dual-frequency high intensity focused ultrasound thrombolysis: An <i>In vitro</i> study. Applied Physics Letters, 2017, 110, .	3.3	67
61	Intravascular forward-looking ultrasound transducers for microbubble-mediated sonothrombolysis. Scientific Reports, 2017, 7, 3454.	3.3	65
62	Improving sensitivity in ultrasound molecular imaging by tailoring contrast agent size distribution: in vivo studies. Molecular Imaging, 2010, 9, 87-95.	1.4	64
63	Needle Size and Injection Rate Impact Microbubble Contrast Agent Population. Ultrasound in Medicine and Biology, 2008, 34, 1182-1185.	1.5	62
64	Methods of Generating Submicrometer Phase-Shift Perfluorocarbon Droplets for Applications in Medical Ultrasonography. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2017, 64, 252-263.	3.0	62
65	Design factors of intravascular dual frequency transducers for super-harmonic contrast imaging and acoustic angiography. Physics in Medicine and Biology, 2015, 60, 3441-3457.	3.0	60
66	Intracellular delivery and ultrasonic activation of folate receptor-targeted phase-change contrast agents in breast cancer cells in vitro. Journal of Controlled Release, 2016, 243, 69-77.	9.9	60
67	Acoustic characterization of contrast-to-tissue ratio and axial resolution for dual-frequency contrast-specific acoustic angiography imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2014, 61, 1668-1687.	3.0	58
68	Ultrasound-Driven Microbubble Oscillation and Translation Within Small Phantom Vessels. Ultrasound in Medicine and Biology, 2007, 33, 1978-1987.	1.5	57
69	Modeling of the acoustic response from contrast agent microbubbles near a rigid wall. Ultrasonics, 2009, 49, 195-201.	3.9	56
70	Parallel generation of uniform fine droplets at hundreds of kilohertz in a flow-focusing module. Biomicrofluidics, 2013, 7, 34112.	2.4	55
71	Vascular channels formed by subpopulations of PECAM1+ melanoma cells. Nature Communications, 2014, 5, 5200.	12.8	55
72	On the Relationship Between Microbubble Fragmentation, Deflation and Broadband Superharmonic Signal Production. Ultrasound in Medicine and Biology, 2015, 41, 1711-1725.	1.5	55

#	Article	IF	CITATIONS
73	Microbubble tunneling in gel phantoms. Journal of the Acoustical Society of America, 2009, 125, EL183-EL189.	1.1	54
74	Improving the Performance of Phase-Change Perfluorocarbon Droplets for Medical Ultrasonography: Current Progress, Challenges, and Prospects. Scientifica, 2014, 2014, 1-24.	1.7	54
75	Acoustic response from adherent targeted contrast agents. Journal of the Acoustical Society of America, 2006, 120, EL63-EL69.	1.1	53
76	Vaporization dynamics of volatile perfluorocarbon droplets: A theoretical model and <i>in vitro</i> validation. Medical Physics, 2014, 41, 102901.	3.0	51
77	Tailoring the size distribution of ultrasound contrast agents: possible method for improving sensitivity in molecular imaging. Molecular Imaging, 2007, 6, 384-92.	1.4	51
78	Effect of coupled oscillations on microbubble behavior. Journal of the Acoustical Society of America, 2003, 114, 1678-1690.	1.1	50
79	Spatio-temporal dynamics of an encapsulated gas bubble in an ultrasound field. Journal of the Acoustical Society of America, 2006, 120, 661-669.	1.1	50
80	Enhancing Nanoparticle Accumulation and Retention in Desmoplastic Tumors via Vascular Disruption for Internal Radiation Therapy. Theranostics, 2017, 7, 253-269.	10.0	50
81	Flow-focusing regimes for accelerated production of monodisperse drug-loadable microbubbles toward clinical-scale applications. Lab on A Chip, 2013, 13, 4816.	6.0	48
82	Direct Video-Microscopic Observation of the Dynamic Effects of Medical Ultrasound on Ultrasound Contrast Microspheres. Investigative Radiology, 1998, 33, 863-870.	6.2	48
83	Precision Manufacture of Phase-Change Perfluorocarbon Droplets Using Microfluidics. Ultrasound in Medicine and Biology, 2011, 37, 1952-1957.	1.5	47
84	Toward Ultrasound Molecular Imaging With Phase-Change Contrast Agents: An InÂVitro Proof of Principle. Ultrasound in Medicine and Biology, 2013, 39, 893-902.	1.5	47
85	High-speed, clinical-scale microfluidic generation of stable phase-change droplets for gas embolotherapy. Lab on A Chip, 2011, 11, 3990.	6.0	46
86	A preliminary engineering design of intravascular dual-frequency transducers for contrast-enhanced acoustic angiography and molecular imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2014, 61, 870-880.	3.0	44
87	Optimizing Sensitivity of Ultrasound Contrast-Enhanced Super-Resolution Imaging by Tailoring Size Distribution of Microbubble Contrast Agent. Ultrasound in Medicine and Biology, 2017, 43, 2488-2493.	1.5	44
88	Molecular Acoustic Angiography: A New Technique for High-resolution Superharmonic Ultrasound Molecular Imaging. Ultrasound in Medicine and Biology, 2016, 42, 769-781.	1.5	43
89	Focused ultrasound-facilitated brain drug delivery using optimized nanodroplets: vaporization efficiency dictates large molecular delivery. Physics in Medicine and Biology, 2018, 63, 035002.	3.0	42
90	Validation of Dynamic Contrast-Enhanced Ultrasound in Rodent Kidneys as an Absolute Quantitative Method for Measuring Blood Perfusion. Ultrasound in Medicine and Biology, 2011, 37, 900-908.	1.5	41

#	Article	IF	CITATIONS
91	Nanodroplet-mediated catheter-directed sonothrombolysis of retracted blood clots. Microsystems and Nanoengineering, 2021, 7, 3.	7.0	41
92	Acoustic responses of monodisperse lipid encapsulated microbubble contrast agents produced by flow focusing. Bubble Science, Engineering & Technology, 2010, 2, 33-40.	0.2	40
93	Nanoparticle delivery enhancement with acoustically activated microbubbles. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2013, 60, 65-77.	3.0	39
94	An evaluation of the sonoporation potential of low-boiling point phase-change ultrasound contrast agents in vitro. Journal of Therapeutic Ultrasound, 2017, 5, 7.	2.2	39
95	Accelerated Clearance of Ultrasound Contrast Agents Containing Polyethylene Glycol is Associated with the Generation of Anti-Polyethylene Glycol Antibodies. Ultrasound in Medicine and Biology, 2018, 44, 1266-1280.	1.5	39
96	Super-Resolution Imaging Through the Human Skull. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67, 25-36.	3.0	39
97	Assessment of Molecular Imaging of Angiogenesis with Three-Dimensional Ultrasonography. Molecular Imaging, 2011, 10, 7290.2011.00015.	1.4	38
98	An InÂVivo Validation of the Application of Acoustic Radiation Force to Enhance the Diagnostic Utility of Molecular Imaging Using 3-D Ultrasound. Ultrasound in Medicine and Biology, 2012, 38, 651-660.	1.5	38
99	A Comparison of Sonothrombolysis in Aged Clots between Low-Boiling-Point Phase-Change Nanodroplets and Microbubbles of the Same Composition. Ultrasound in Medicine and Biology, 2020, 46, 3059-3068.	1.5	38
100	Ultrasound assessment of angiogenesis in a matrigel model in rats. Ultrasound in Medicine and Biology, 2006, 32, 673-681.	1.5	37
101	Functional ultrasound imaging for assessment of extracellular matrix scaffolds used for liver organoid formation. Biomaterials, 2013, 34, 9341-9351.	11.4	37
102	Microfluidic Fabrication of Stable Gas-Filled Microcapsules for Acoustic Contrast Enhancement. Langmuir, 2013, 29, 12352-12357.	3.5	37
103	Phantom evaluation of stacked-type dual-frequency 1–3 composite transducers: A feasibility study on intracavitary acoustic angiography. Ultrasonics, 2015, 63, 7-15.	3.9	37
104	Early Assessment of Tumor Response to Radiation Therapy using High-Resolution Quantitative Microvascular Ultrasound Imaging. Theranostics, 2018, 8, 156-168.	10.0	37
105	Oxygen microbubbles improve radiotherapy tumor control in a rat fibrosarcoma model – A preliminary study. PLoS ONE, 2018, 13, e0195667.	2.5	37
106	Focused Ultrasound for Immunomodulation of the Tumor Microenvironment. Journal of Immunology, 2020, 205, 2327-2341.	0.8	37
107	Ultrasound radiation force modulates ligand availability on targeted contrast agents. Molecular Imaging, 2006, 5, 139-47.	1.4	37
108	Microfluidic Generation of Acoustically Active Nanodroplets. Small, 2012, 8, 1876-1879.	10.0	36

#	Article	IF	CITATIONS
109	Radiation-Force Assisted Targeting Facilitates Ultrasonic Molecular Imaging. Molecular Imaging, 2004, 3, 153535002004041.	1.4	34
110	Ultrasound Molecular Imaging of VEGFR-2 in Clear-Cell Renal Cell Carcinoma Tracks Disease Response to Antiangiogenic and Notch-Inhibition Therapy. Theranostics, 2018, 8, 141-155.	10.0	33
111	Candle-Soot Carbon Nanoparticles in Photoacoustics: Advantages and Challenges for Laser Ultrasound Transmitters. IEEE Nanotechnology Magazine, 2019, 13, 13-28.	1.3	32
112	Cavitation Enhancing Nanodroplets Mediate Efficient DNA Fragmentation in a Bench Top Ultrasonic Water Bath. PLoS ONE, 2015, 10, e0133014.	2.5	30
113	The "Fingerprint―of Cancer Extends Beyond Solid Tumor Boundaries: Assessment With a Novel Ultrasound Imaging Approach. IEEE Transactions on Biomedical Engineering, 2016, 63, 1082-1086.	4.2	30
114	Assessment of molecular imaging of angiogenesis with three-dimensional ultrasonography. Molecular Imaging, 2011, 10, 460-8.	1.4	30
115	Scaled-up production of monodisperse, dual layer microbubbles using multi-array microfluidic module for medical imaging and drug delivery. Bubble Science, Engineering & Technology, 2012, 4, 12-20.	0.2	28
116	In Vivo Demonstration of Cancer Molecular Imaging with Ultrasound Radiation Force and Buried-Ligand Microbubbles. Molecular Imaging, 2013, 12, 7290.2013.00052.	1.4	27
117	Variability in circulating gas emboli after a same scuba diving exposure. European Journal of Applied Physiology, 2018, 118, 1255-1264.	2.5	27
118	Superharmonic Ultrasound for Motion-Independent Localization Microscopy: Applications to Microvascular Imaging From Low to High Flow Rates. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67, 957-967.	3.0	26
119	A Comparative Evaluation of Ultrasound Molecular Imaging, Perfusion Imaging, and Volume Measurements in Evaluating Response to Therapy in Patient-Derived Xenografts. Technology in Cancer Research and Treatment, 2013, 12, 311-321.	1.9	25
120	Optimization of Contrast-to-Tissue Ratio Through Pulse Windowing in Dual-Frequency "Acoustic Angiography―Imaging. Ultrasound in Medicine and Biology, 2015, 41, 1884-1895.	1.5	25
121	Experimental verification of theoretical equations for acoustic radiation force on compressible spherical particles in traveling waves. Physical Review E, 2016, 93, 053109.	2.1	25
122	Dual-Frequency Piezoelectric Endoscopic Transducer for Imaging Vascular Invasion in Pancreatic Cancer. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2017, 64, 1078-1086.	3.0	25
123	A Pilot Clinical Study in Characterization of Malignant Renal-cell Carcinoma Subtype with Contrast-enhanced Ultrasound. Ultrasonic Imaging, 2017, 39, 126-136.	2.6	25
124	Changes in Lipid-Encapsulated Microbubble Population During Continuous Infusion and Methods to Maintain Consistency. Ultrasound in Medicine and Biology, 2009, 35, 1748-1755.	1.5	24
125	Motion Corrected Cadence CPS Ultrasound for Quantifying Response to Vasoactive Drugs in a Rat Kidney Model. Urology, 2009, 74, 675-681.	1.0	24
126	Microbubbles in imaging: applications beyond ultrasound. Bubble Science, Engineering & Technology, 2010, 2, 3-8.	0.2	24

#	Article	IF	CITATIONS
127	Experimental Validation of Displacement Underestimation in ARFI Ultrasound. Ultrasonic Imaging, 2013, 35, 196-213.	2.6	24
128	Targeted Transthoracic Acoustic Activation of Systemically Administered Nanodroplets to Detect Myocardial Perfusion Abnormalities. Circulation: Cardiovascular Imaging, 2016, 9, .	2.6	24
129	Acoustic Behavior of a Reactivated, Commercially Available Ultrasound Contrast Agent. Journal of the American Society of Echocardiography, 2017, 30, 189-197.	2.8	24
130	Magneto-sonothrombolysis with combination of magnetic microbubbles and nanodroplets. Ultrasonics, 2021, 116, 106487.	3.9	24
131	Nucleation and Growth Synthesis of Siloxane Gels to Form Functional, Monodisperse, and Acoustically Programmable Particles. Angewandte Chemie - International Edition, 2014, 53, 8070-8073.	13.8	23
132	Management of Indeterminate Cystic Kidney Lesions: Review of Contrast-enhanced Ultrasound as a Diagnostic Tool. Urology, 2016, 87, 1-10.	1.0	23
133	Contrast Enhanced Superharmonic Imaging for Acoustic Angiography Using Reduced Form-Factor Lateral Mode Transmitters for Intravascular and Intracavity Applications. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2017, 64, 311-319.	3.0	23
134	High Resolution Ultrasound Superharmonic Perfusion Imaging: In Vivo Feasibility and Quantification of Dynamic Contrast-Enhanced Acoustic Angiography. Annals of Biomedical Engineering, 2017, 45, 939-948.	2.5	23
135	Conventional dose rate spatially-fractionated radiation therapy (SFRT) treatment response and its association with dosimetric parameters—A preclinical study in a Fischer 344 rat model. PLoS ONE, 2020, 15, e0229053.	2.5	23
136	Dual-Frequency Intravascular Sonothrombolysis: An <i>In Vitro</i> Study. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68, 3599-3607.	3.0	23
137	Acoustic holograms for directing arbitrary cavitation patterns. Applied Physics Letters, 2021, 118, .	3.3	23
138	A multi-pillar piezoelectric stack transducer for nanodroplet mediated intravascular sonothrombolysis. Ultrasonics, 2021, 116, 106520.	3.9	23
139	In Vitro Superharmonic Contrast Imaging Using a Hybrid Dual-Frequency Probe. Ultrasound in Medicine and Biology, 2019, 45, 2525-2539.	1.5	22
140	Observation of contrast agent response to chirp insonation with a simultaneous optical-acoustical system. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2006, 53, 1130-1137.	3.0	21
141	Pulse sequences for uniform perfluorocarbon droplet vaporization and ultrasound imaging. Ultrasonics, 2014, 54, 2024-2033.	3.9	21
142	Assessment of Molecular Acoustic Angiography for Combined Microvascular and Molecular Imaging in Preclinical Tumor Models. Molecular Imaging and Biology, 2017, 19, 194-202.	2.6	21
143	Nanoparticle Delivery of miR-122 Inhibits Colorectal Cancer Liver Metastasis. Cancer Research, 2022, 82, 105-113.	0.9	21
144	ExÂVivo Porcine Arterial and Chorioallantoic Membrane Acoustic Angiography Using Dual-Frequency Intravascular Ultrasound Probes. Ultrasound in Medicine and Biology, 2016, 42, 2294-2307.	1.5	20

#	Article	IF	CITATIONS
145	In Vivo Assessment of the Potential for Renal Bio-Effects from the Vaporization of Perfluorocarbon Phase-Change Contrast Agents. Ultrasound in Medicine and Biology, 2018, 44, 368-376.	1.5	20
146	Effects of Body Positioning on Swallowing and Esophageal Transit in Healthy Dogs. Journal of Veterinary Internal Medicine, 2009, 23, 801-805.	1.6	19
147	Dual-frequency acoustic droplet vaporization detection for medical imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2015, 62, 1623-1633.	3.0	19
148	Effect of Hydrostatic Pressure, Boundary Constraints and Viscosity on the Vaporization Threshold of Low-Boiling-Point Phase-Change Contrast Agents. Ultrasound in Medicine and Biology, 2019, 45, 968-979.	1.5	19
149	Examining the Influence of Low-Dose Tissue Plasminogen Activator on Microbubble-Mediated Forward-Viewing Intravascular Sonothrombolysis. Ultrasound in Medicine and Biology, 2020, 46, 1698-1706.	1.5	19
150	Versatile Horizontal Force Probe for Mechanical Tests on Pipette-Held Cells, Particles, and Membrane Capsules. Biophysical Journal, 2009, 96, 1218-1231.	0.5	18
151	Adaptive windowing in contrast-enhanced intravascular ultrasound imaging. Ultrasonics, 2016, 70, 123-135.	3.9	18
152	In Vivo Molecular Imaging Using Low-Boiling-Point Phase-Change Contrast Agents: A Proof of Concept Study. Ultrasound in Medicine and Biology, 2019, 45, 177-191.	1.5	18
153	First-in-Human Study of Acoustic Angiography in the Breast and Peripheral Vasculature. Ultrasound in Medicine and Biology, 2017, 43, 2939-2946.	1.5	17
154	Ultrasound-Stimulated Phase-Change Contrast Agents for Transepithelial Delivery of Macromolecules, Toward Gastrointestinal Drug Delivery. Ultrasound in Medicine and Biology, 2019, 45, 1762-1776.	1.5	17
155	Vaporization Detection Imaging: A Technique for Imaging Low-Boiling-Point Phase-Change Contrast Agents with a High Depth of Penetration and Contrast-to-Tissue Ratio. Ultrasound in Medicine and Biology, 2019, 45, 192-207.	1.5	17
156	Visualization of Microvascular Angiogenesis Using Dual-Frequency Contrast-Enhanced Acoustic Angiography: A Review. Ultrasound in Medicine and Biology, 2020, 46, 2625-2635.	1.5	17
157	Harnessing ultrasound-stimulated phase change contrast agents to improve antibiotic efficacy against methicillin-resistant Staphylococcus aureus biofilms. Biofilm, 2021, 3, 100049.	3.8	17
158	Evaluation of bias voltage modulation sequence for nonlinear contrast agent imaging using a capacitive micromachined ultrasonic transducer array. Physics in Medicine and Biology, 2014, 59, 4879-4896.	3.0	16
159	Optimizing Acoustic Activation of Phase Change Contrast Agents With the Activation Pressure Matching Method: A Review. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2017, 64, 264-272.	3.0	16
160	Ultrasound Measurement of Vascular Density to Evaluate Response to Anti-Angiogenic Therapy in Renal Cell Carcinoma. IEEE Transactions on Biomedical Engineering, 2019, 66, 873-880.	4.2	16
161	On Command Drug Delivery via Cell onveyed Phototherapeutics. Small, 2019, 15, e1901442	10.0	16
162	Assessment of the Superharmonic Response of Microbubble Contrast Agents for Acoustic Angiography as a Function of Microbubble Parameters. Ultrasound in Medicine and Biology, 2019, 45, 2515-2524.	1.5	16

#	Article	IF	CITATIONS
163	An Improved CMUT Structure Enabling Release and Collapse of the Plate in the Same Tx/Rx Cycle for Dual-Frequency Acoustic Angiography. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2020, 67, 2291-2302.	3.0	16
164	Optimization of Phase-Change Contrast Agents for Targeting MDA-MB-231 Breast Cancer Cells. Ultrasound in Medicine and Biology, 2018, 44, 2728-2738.	1.5	15
165	Safety Evaluation of a Forward-Viewing Intravascular Transducer for Sonothrombolysis: An in Vitro and ex Vivo Study. Ultrasound in Medicine and Biology, 2021, 47, 3231-3239.	1.5	15
166	An In Vivo Evaluation of the Effect of Repeated Administration and Clearance of Targeted Contrast Agents on Molecular Imaging Signal Enhancement. Theranostics, 2013, 3, 93-98.	10.0	14
167	A 3 MHz/18 MHz dual-layer co-linear array for transrectal acoustic angiography. , 2015, , .		14
168	Laser-generated-focused ultrasound transducers for microbubble-mediated, dual-excitation sonothrombolysis. , 2016, , .		14
169	Super resolution contrast ultrasound imaging: Analysis of imaging resolution and application to imaging tumor angiogenesis. , 2016, , .		14
170	Optical tracking of acoustic radiation force impulse-induced dynamics in a tissue-mimicking phantom. Journal of the Acoustical Society of America, 2009, 126, 2733-2745.	1.1	13
171	Applications of sub-micron low-boiling point phase change contrast agents for ultrasound imaging and therapy. Current Opinion in Colloid and Interface Science, 2021, 56, 101498.	7.4	13
172	Dual frequency transducers for intravascular ultrasound super-harmonic imaging and acoustic angiography. , 2014, , .		12
173	Real-time ultrasound angiography using superharmonic dual-frequency (2.25 MHz/30 MHz) cylindrical array: In vitro study. Ultrasonics, 2018, 82, 298-303.	3.9	12
174	A Dual-Frequency Colinear Array for Acoustic Angiography in Prostate Cancer Evaluation. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2018, 65, 2418-2428.	3.0	12
175	A new preclinical ultrasound platform for widefield 3D imaging of rodents. Review of Scientific Instruments, 2018, 89, 075107.	1.3	12
176	Ultrasound-mediated therapies using oil and perfluorocarbon-filled nanodroplets. Drug Development Research, 2006, 67, 42-46.	2.9	11
177	Hybrid dual frequency transducer and Scanhead for micro-ultrasound imaging. , 2009, , .		11
178	Wideband acoustic activation and detection of droplet vaporization events using a capacitive micromachined ultrasonic transducer. Journal of the Acoustical Society of America, 2016, 139, 3193-3198.	1.1	11
179	Cavitation Enhancement Increases the Efficiency and Consistency of Chromatin Fragmentation from Fixed Cells for Downstream Quantitative Applications. Biochemistry, 2018, 57, 2756-2761.	2.5	11
180	Adaptive Multifocus Beamforming for Contrast-Enhanced-Super-Resolution Ultrasound Imaging in Deep Tissue. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2018, 65, 2255-2263.	3.0	11

#	Article	IF	CITATIONS
181	On the Relationship between Dynamic Contrast-Enhanced Ultrasound Parameters and the Underlying Vascular Architecture Extracted from Acoustic Angiography. Ultrasound in Medicine and Biology, 2019, 45, 539-548.	1.5	11
182	Characterization of an Array-Based Dual-Frequency Transducer for Superharmonic Contrast Imaging. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68, 2419-2431.	3.0	11
183	Dynamic assessment of dual-frequency microbubble-mediated sonothrombolysis <i>in vitro</i> . Journal of Applied Physics, 2019, 125, .	2.5	10
184	FEASIBILITY AND SAFETY OF CONTRASTâ€ENHANCED ULTRASOUND IN THE DISTAL LIMB OF SIX HORSES. Veterinary Radiology and Ultrasound, 2016, 57, 282-289.	0.9	9
185	Quantitative sub-resolution blood velocity estimation using ultrasound localization microscopy <i>ex-vivo</i> and <i>in-vivo</i> . Biomedical Physics and Engineering Express, 2020, 6, 035019.	1.2	9
186	Transcranial Neuromodulation Array With Imaging Aperture for Simultaneous Multifocus Stimulation in Nonhuman Primates. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022, 69, 261-272.	3.0	9
187	A Pilot Study to Assess Markers of Renal Damage in the Rodent Kidney After Exposure to 7 MHz Ultrasound Pulse Sequences Designed to Cause Microbubble Translation and Disruption. Ultrasound in Medicine and Biology, 2012, 38, 168-172.	1.5	8
188	An Integrated System for Superharmonic Contrast-Enhanced Ultrasound Imaging: Design and Intravascular Phantom Imaging Study. IEEE Transactions on Biomedical Engineering, 2016, 63, 1933-1943.	4.2	8
189	Implementation of a Novel 288-Element Dual-Frequency Array for Acoustic Angiography: In Vitro and <i>In Vivo</i> Characterization. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2021, 68, 2657-2666.	3.0	8
190	A Handheld Imaging Probe for Acoustic Angiography With an Ultrawideband Capacitive Micromachined Ultrasonic Transducer (CMUT) Array. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022, 69, 2318-2330.	3.0	8
191	In vitro parameter optimization for spatial control of focused ultrasound ablation when using low boiling point phase-change nanoemulsions. Journal of Therapeutic Ultrasound, 2013, 1, 16.	2.2	7
192	Transient acoustic vaporization signatures unique to low boiling point phase change contrast agents enable super-resolution ultrasound imaging without spatiotemporal filtering. AlP Advances, 2020, 10, 105124.	1.3	7
193	Perspectives on high resolution microvascular imaging with contrast ultrasound. Applied Physics Letters, 2020, 116, 210501.	3.3	7
194	Microvascular Ultrasonic Imaging of Angiogenesis Identifies Tumors in a Murine Spontaneous Breast Cancer Model. International Journal of Biomedical Imaging, 2020, 2020, 1-10.	3.9	7
195	An Analysis of Sonothrombolysis and Cavitation for Retracted and Unretracted Clots Using Microbubbles Versus Low-Boiling-Point Nanodroplets. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022, 69, 711-719.	3.0	7
196	Effects of Injection Volume and Route of Administration on Dolutegravir In Situ Forming Implant Pharmacokinetics. Pharmaceutics, 2022, 14, 615.	4.5	7
197	Ultrasound multiple scattering with microbubbles can differentiate between tumor and healthy tissue in vivo. Physics in Medicine and Biology, 2019, 64, 115022.	3.0	6
198	Characterization of the Ultrasound Localization Microscopy Resolution Limit in the Presence of Image Degradation. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022, 69, 124-134.	3.0	6

#	Article	IF	CITATIONS
199	High-resolution, high-contrast ultrasound imaging using a prototype dual-frequency transducer in-vitro and in-vivo studies. , 2009, , .		5
200	3-D Microvessel-Mimicking Ultrasound Phantoms Produced With a Scanning Motion System. Ultrasound in Medicine and Biology, 2011, 37, 827-833.	1.5	5
201	A configurable dual-frequency transmit/receive system for acoustic angiography imaging. , 2014, , .		5
202	Histological and blood chemistry examination of the rodent kidney after exposure to flash-replenishment ultrasound contrast imaging. Ultrasonics, 2019, 98, 1-6.	3.9	5
203	Imaging methods to evaluate tumor microenvironment factors affecting nanoparticle drug delivery and antitumor response. , 2021, 4, 382-413.		5
204	Magnetic Resonance Detection of Gas Microbubbles via HyperCEST: A Path Toward Dual Modality Contrast Agent. ChemPhysChem, 2021, 22, 1219-1228.	2.1	5
205	Validation of a combined ultrasound and bioluminescence imaging system with magnetic resonance imaging in orthotopic pancreatic murine tumors. Scientific Reports, 2022, 12, 102.	3.3	5
206	Development of a Robotic Shear Wave Elastography System for Noninvasive Staging of Liver Disease in Murine Models. Hepatology Communications, 2022, 6, 1827-1839.	4.3	5
207	Radiation force-enhanced targeted imaging and near real-time molecular imaging using a dual-frequency high-resolution transducer: In-vitro and in-vivo results. , 2009, , .		4
208	Blood vessel structural morphology derived from 3D dual-frequency ultrasound images. , 2010, , .		4
209	Dual-frequency IVUS array for contrast enhanced intravascular ultrasound imaging. , 2015, , .		4
210	Beamforming and Imaging Approaches for Array-Based Dual-Frequency Acoustic Angiography. , 2019, , .		4
211	In Vivo Porcine Aged Deep Vein Thrombosis Model for Testing Ultrasound-based Thrombolysis Techniques. Ultrasound in Medicine and Biology, 2021, 47, 3447-3457.	1.5	4
212	Optimization of contrast-to-tissue ratio and role of bubble destruction in dual-frequency contrast-specific "acoustic angiography" imaging. , 2014, , .		3
213	Optimization of multi-pulse sequences for nonlinear contrast agent imaging using a cMUT array. Physics in Medicine and Biology, 2015, 60, 3111-3127.	3.0	3
214	A dual-frequency endoscopic transducer for imaging vascular invasion in pancreatic cancer. , 2016, , .		3
215	Improving the heating efficiency of high intensity focused ultrasound ablation through the use of phase change nanodroplets and multifocus sonication. Physics in Medicine and Biology, 2020, 65, 205004.	3.0	3
216	Ultrasound Contrast Agents. , 2021, , 639-653.		3

Ultrasound Contrast Agents., 2021,, 639-653. 216

1

#	Article	IF	CITATIONS
217	Genome-wide cancer-specific chromatin accessibility patterns derived from archival processed xenograft tumors. Genome Research, 2021, 31, 2327-2339.	5.5	3
218	Polyvinyl Alcohol Cryogels for Acoustic Characterization of Phase-Change Contrast Agents. Ultrasound in Medicine and Biology, 2022, 48, 954-960.	1.5	3
219	Submicron decafluorobutane phase-change contrast agents generated by microbubble condensation. , 2011, , .		2
220	Dual-frequency intravascular ultrasound imaging of microbubble contrast agents: Ex vivo and in vivo demonstration. , 2015, , .		2
221	The application of acoustic angiography to assess the progression of angiogenesis in a spontaneous mouse model of breast cancer. , 2016, , .		2
222	Dual-frequency transducer with a wideband PVDF receiver for contrast-enhanced, adjustable harmonic imaging. , 2017, , .		2
223	In-vitro delivery of BLM into resistant cancer cell line using sonoporation with low-boiling point phase change ultrasound contrast agents. , 2017, , .		2
224	Development of forward-looking ultrasound transducers for microbubble-aided intravascular ultrasound-enhanced thrombolysis. , 2017, , .		2
225	High-Framerate Dynamic Contrast-Enhanced Ultrasound Imaging of Rat Kidney Perfusion. , 2019, , .		2
226	Using Low-Boiling Point Phase Change Contrast Agent Activation Signals for Super Resolution Ultrasound Localization Microscopy. , 2019, , .		2
227	Nanodroplet-Mediated Intravascular Sonothrombolysis: Cavitation Study. , 2020, , .		2
228	Effect of Acoustic Parameters and Microbubble Concentration on the Likelihood of Encapsulated Microbubble Coalescence. Ultrasound in Medicine and Biology, 2021, 47, 2980-2989.	1.5	2
229	An Ultra-Wideband Capacitive Micromachined Ultrasonic Transducer (CMUT) Array for Acoustic Angiography: Preliminary Results. , 2020, , .		2
230	Ultrasound in decompression research: fundamentals, considerations, and future technologies. Undersea and Hyperbaric Medicine, 2021, 48, 59-72.	0.3	2
231	1F-4 Acoustic Localization of Sub-Micron Droplets for Targeted Imaging and Therapy. , 2006, , .		1
232	1F-5 Detection of Echoes from Adherent Targeted Microbubbles. , 2006, , .		1
233	9B-4 Microbubble Oscillations in Gel Phantom and Ex Vivo Preparation Validate Proposed Mechanisms for Contrast-Based Drug Delivery. Proceedings IEEE Ultrasonics Symposium, 2007, , .	0.0	1

Parameter space for microbubble wall interaction estimated from gel phantom. , 2008, , .

#	Article	IF	CITATIONS
235	Ultrasonic analysis of precision-engineered acoustically active lipospheres produced by microfluidic. , 2009, , .		1
236	Applications of low intensity pulsed ultrasound for functional bone tissue engineering using adult stem cells. , 2009, , .		1
237	An in-vivo evaluation of the effects of anesthesia carrier gases on ultrasound contrast agent circulation. , 2009, , .		1
238	Improving the quantitative ability of contrast enhanced ultrasound perfusion imaging: effect of contrast administration rate and imaging plane orientation. , 2011, , .		1
239	Characterisation of polymer-shelled microbubbles in wall-less flow phantom using high-frequency ultrasound and video microscopy. Bubble Science, Engineering & Technology, 2011, 3, 73-78.	0.2	1
240	Ultrasound molecular imaging with customizable nanoscale phase-change contrast agents: An in-vitro feasibility study. , 2012, , .		1
241	Small aperture, dual frequency ultrasound transducers for intravascular contrast imaging. , 2013, , .		1
242	A Dual Frequency IVUS Transducer With a Lateral Mode Transmitter for Contrast Enhanced Intravascular Ultrasound Imaging. , 2015, , .		1
243	Molecular acoustic angiography: Demonstration of in vivo feasibility for high resolution superharmonic ultrasound molecular imaging. , 2015, , .		1
244	Dual-frequency super harmonic imaging piezoelectric transducers for transrectal ultrasound. Proceedings of SPIE, 2015, , .	0.8	1
245	A dual-frequency co-linear array for prostate acoustic angiography. , 2016, , .		1
246	Contrast-enhanced ultrasound (CEUS) in patients with chronic kidney disease (CKD). , 2017, , .		1
247	Characterization of a prototype transmit 2 MHz receive 21 MHz array for superharmonic imaging. , 2017, , .		1
248	Micromachined 1â \in 3 composite dual frequency IVUS array for contrast enhanced intravascular ultasound imaging. , 2017, , .		1
249	Notice of Removal: Oxygen microbubbles improve tumor control after radiotherapy in a rat fibrosarcoma model. , 2017, , .		1
250	Designing Oxygen Microbubbles for Treating Tumor Hypoxia. , 2019, , .		1
251	Enhanced Depth of Field Acoustic Angiography with a Prototype 288-element Dual-Frequency Array. , 2019, , .		1
252	Assessing Polycystic Kidney Disease in Rodents: Comparison of Robotic 3D Ultrasound and Magnetic Resonance Imaging. Kidney360, 2020, 1, 1128-1136.	2.1	1

#	Article	IF	CITATIONS
253	Cavitation-Enhanced High-Pressure Pulsed Sonothrombolysis with Perfluorocarbon Nanodroplets versus Microbubbles in Contracted and Uncontracted Clots. , 2020, , .		1
254	CMR 2007: 5.01: Optimizing the size distribution of contrast agents for ultrasound imaging. Contrast Media and Molecular Imaging, 2007, 2, 285-286.	0.8	0
255	Acoustic characterization of individual monodisperse contrast agents with an optical-acoustical system. , 2009, , .		0
256	Improving technology for molecular imaging with ultrasound. , 2009, , .		0
257	Applications of low intensity pulsed ultrasound for functional bone tissue engineering using adult stem cells. , 2009, , .		Ο
258	Three dimensional ultrasonic molecular imaging of angiogenesis. , 2010, , .		0
259	Efficacy of perfluorobutane as a phase-change contrast agent for low-energy ultrasonic imaging. , 2010, , .		Ο
260	Design and testing of acoustically-active therapeutic nanocapsule delivery vehicles for ultrasound-targeted chemotherapy. , 2010, , .		0
261	Ultrasound and microbubble parameter optimization for maximizing sonoporation. , 2011, , .		0
262	Imaging tortuosity: the potential utility of acoustic angiography in cancer detection and tumor assessment. Imaging in Medicine, 2012, 4, 581-583.	0.0	0
263	Vaporization phenomena for ultrasound phase-change contrast agents assessed via high-speed optical microscopy. , 2013, , .		Ο
264	Dynamics of volatile phase-change contrast agents: Theoretical model and experimental measurements. , 2014, , .		0
265	In vivo quantification of image enhancement and circulation kinetics for phase change perfluorocarbon agents using custom pulse sequences. , 2014, , .		0
266	Molecular acoustic angiography: Comparison of contrast-to-tissue ratio with multi-pulse techniques and imaging multiple targeted microbubbles. , 2016, , .		0
267	Characterizing volumes of kidney segments in Streptozotocin induced diabetic rat model utilizing 4D contrast-enhanced ultrasound. , 2016, , .		Ο
268	In-vivo quantitative analysis of the angiogenic microvasculature in tumor-bearing rats using multiple scattering. Proceedings of Meetings on Acoustics, 2016, , .	0.3	0
269	Adaptive windowing in mechanically-steered intravascular ultrasound imaging: Ex vivo and in vivo studies with contrast enhancement. , 2016, , .		0
270	Acoustic angiography: a new high frequency contrast ultrasound technique for biomedical imaging. Proceedings of SPIE, 2016, , .	0.8	0

#	Article	IF	CITATIONS
271	Notice of Removal: In vivo bioeffects from phase change and microbubble contrast agents in the rodent kidney: Short term and long-term effects after excitation with a range of mechanical indices. , 2017, , .		0
272	Micromachined 1â \in "3 composite dual frequency IVUS array for contrast enhanced intravascular ultrasound imaging. , 2017, , .		0
273	Characterization of a prototype transmit 2 MHz receive 21 MHz array for superharmonic imaging. , 2017, , .		0
274	Notice of Removal: Accelerated clearance of ultrasound contrast agents containing polyethylene glycol (PEG) is associated with a PEG-specific immune response. , 2017, , .		0
275	Focused ultrasound-facilitated brain drug delivery using optimized nanodroplets. , 2017, , .		О
276	In-vitro delivery of BLM into resistant cancer cell line using sonoporation with low-boiling point phase change ultrasound contrast agents. , 2017, , .		0
277	Notice of Removal: Adaptation of the acoustic angiography technique for use with a capacitive micromachined ultrasound transducer (CMUT). , 2017, , .		0
278	Notice of Removal: Designing targeted ultrasound contrast for molecular imaging of secreted frizzled related protein-2 (SFRP2) without biotin-avidin linkages. , 2017, , .		0
279	Contrast-enhanced ultrasound (CEUS) in patients with chronic kidney disease (CKD). , 2017, , .		0
280	Adaptive beamforming contrast enhanced super resolution imaging for improved sensitivity and resolution in deep tissues. , 2017, , .		0
281	Adaptive beamforming contrast enhanced super resolution imaging for improved sensitivity and resolution in deep tissues. , 2017, , .		0
282	Human Transcranial Super Resolution Imaging. , 2018, , .		0
283	The biological response of rodent kidneys to low frequency, full volume diagnostic contrast-enhanced ultrasound imaging: Pilot data. Data in Brief, 2019, 25, 104170.	1.0	Ο
284	Super Harmonic Ultrasound Localization Microscopy. , 2019, , .		0
285	Accelerated blood clearance of targeted ultrasound contrast reduced molecular imaging signal intensity: Secreted Frizzled Related Protein-2 signal remained significantly higher than signal from either Vascular Endothelial Growth Factor Receptor-2 or alphaVbeta3 integrin. , 2019, 2019, 407-410.		0
286	Acoustic Angiography: Superharmonic Contrast-Enhanced Ultrasound Imaging for Noninvasive Visualization of Microvasculature. Methods in Molecular Biology, 2022, 2393, 641-655.	0.9	0
287	A fully automated method for late ventricular diastole frame selection in post-dive echocardiography without ECG gating. Undersea and Hyperbaric Medicine, 2021, 48, 73-80.	0.3	0