List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5151491/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Molecular Evolution of Genes Controlling Petal and Stamen Development: Duplication and Divergence Within the APETALA3 and PISTILLATA MADS-Box Gene Lineages. Genetics, 1998, 149, 765-783.	1.2	453
2	Patterns of Gene Duplication and Functional Evolution During the Diversification of the AGAMOUSSubfamily of MADS Box Genes in Angiosperms. Genetics, 2004, 166, 1011-1023.	1.2	412
3	Major flowering time gene, <i>FLOWERING LOCUS C</i> , regulates seed germination in <i>Arabidopsis thaliana</i> . Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 11661-11666.	3.3	263
4	Evolution of genetic mechanisms controlling petal development. Nature, 1999, 399, 144-148.	13.7	250
5	Elaboration of B Gene Function to Include the Identity of Novel Floral Organs in the Lower Eudicot Aquilegia. Plant Cell, 2007, 19, 750-766.	3.1	180
6	The ABC model and the diversification of floral organ identity. Seminars in Cell and Developmental Biology, 2010, 21, 129-137.	2.3	177
7	Differential regulation of symmetry genes and the evolution of floral morphologies. Proceedings of the United States of America, 2003, 100, 12814-12819.	3.3	163
8	Evolution of the Petal and Stamen Developmental Programs: Evidence from Comparative Studies of the Lower Eudicots and Basal Angiosperms. International Journal of Plant Sciences, 2000, 161, S29-S40.	0.6	157
9	Evolution of the APETALA3 and PISTILLATA Lineages of MADS-Box–Containing Genes in the Basal Angiosperms. Molecular Biology and Evolution, 2004, 21, 506-519.	3.5	144
10	Floral symmetry genes and the origin and maintenance of zygomorphy in a plant-pollinator mutualism. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6388-6393.	3.3	134
11	The Aquilegia genome provides insight into adaptive radiation and reveals an extraordinarily polymorphic chromosome with a unique history. ELife, 2018, 7, .	2.8	120
12	Floral MADS box genes and homeotic gender dimorphism in Thalictrum dioicum (Ranunculaceae) - a new model for the study of dioecy. Plant Journal, 2005, 41, 755-766.	2.8	119
13	Virus-induced gene silencing as a tool for functional analyses in the emerging model plant Aquilegia (columbine, Ranunculaceae). Plant Methods, 2007, 3, 6.	1.9	117
14	Are we there yet? Tracking the development of new model systems. Trends in Genetics, 2008, 24, 353-360.	2.9	109
15	The pomegranate (<i>Punica granatum</i> L.) genome and the genomics of punicalagin biosynthesis. Plant Journal, 2017, 91, 1108-1128.	2.8	109
16	A simplified explanation for the frameshift mutation that created a novel C-terminal motif in the APETALA3 gene lineage. BMC Evolutionary Biology, 2006, 6, 30.	3.2	95
17	<i>Aquilegia</i> : A New Model for Plant Development, Ecology, and Evolution. Annual Review of Plant Biology, 2009, 60, 261-277.	8.6	95
18	Disruption of the petal identity gene <i>APETALA3-3</i> is highly correlated with loss of petals within the buttercup family (Ranunculaceae). Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5074-5079.	3.3	88

#	Article	IF	CITATIONS
19	STENOFOLIA Recruits TOPLESS to Repress <i>ASYMMETRIC LEAVES2</i> at the Leaf Margin and Promote Leaf Blade Outgrowth in <i>Medicago truncatula</i> Â Â. Plant Cell, 2014, 26, 650-664.	3.1	81
20	Evolutionary dynamics of genes controlling floral development. Current Opinion in Plant Biology, 2005, 8, 13-18.	3.5	80
21	<i>Aquilegia</i> as a model system for the evolution and ecology of petals. Philosophical Transactions of the Royal Society B: Biological Sciences, 2010, 365, 477-490.	1.8	77
22	Evolution of spur-length diversity in <i>Aquilegia</i> petals is achieved solely through cell-shape anisotropy. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 1640-1645.	1.2	76
23	One size fits all? Molecular evidence for a commonly inherited petal identity program in Ranunculales. American Journal of Botany, 2009, 96, 96-109.	0.8	75
24	Old dogs, new tricks: Regulatory evolution in conserved genetic modules leads to novel morphologies in plants. Developmental Biology, 2009, 332, 25-35.	0.9	66
25	Petalâ€specific subfunctionalization of an <i>APETALA3</i> paralog in the Ranunculales and its implications for petal evolution. New Phytologist, 2011, 191, 870-883.	3.5	65
26	Deep Annotation of Populus trichocarpa microRNAs from Diverse Tissue Sets. PLoS ONE, 2012, 7, e33034.	1.1	63
27	Patterns of Gene Duplication and Functional Evolution During the Diversification of the <i>AGAMOUS</i> Subfamily of MADS Box Genes in Angiosperms. Genetics, 2004, 166, 1011-1023.	1.2	62
28	The <i><scp>A</scp>quilegia FRUITFULLâ€like</i> genes play key roles in leaf morphogenesis and inflorescence development. Plant Journal, 2013, 74, 197-212.	2.8	59
29	The evolution of reproductive structures in seed plants: a reâ€examination based on insights from developmental genetics. New Phytologist, 2012, 194, 910-923.	3.5	56
30	Large-scale phylogenomic analysis suggests three ancient superclades of the WUSCHEL-RELATED HOMEOBOX transcription factor family in plants. PLoS ONE, 2019, 14, e0223521.	1.1	55
31	Sub―and neoâ€functionalization of APETALA 3 paralogs have contributed to the evolution of novel floral organ identity in Aquilegia (columbine, Ranunculaceae). New Phytologist, 2013, 197, 949-957.	3.5	54
32	Divergent genetic mechanisms underlie reversals to radial floral symmetry from diverse zygomorphic flowered ancestors. Frontiers in Plant Science, 2013, 4, 302.	1.7	53
33	Exploring the evolutionary origin of floral organs of Erycina pusilla, an emerging orchid model system. BMC Evolutionary Biology, 2017, 17, 89.	3.2	52
34	APETALA3 and PISTILLATA homologs exhibit novel expression patterns in the unique perianth of Aristolochia (Aristolochiaceae). Evolution & Development, 2004, 6, 449-458.	1.1	51
35	Molecular basis for three-dimensional elaboration of the <i>Aquilegia</i> petal spur. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142778.	1.2	51
36	Genetic and Molecular Analysis of Angiosperm Flower Development. Advances in Botanical Research, 1998, 28, 197-230.	0.5	46

#	Article	IF	CITATIONS
37	Genetic basis for innovations in floral organ identity. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2005, 304B, 526-535.	0.6	35
38	<i>POPOVICH</i> , encoding a C2H2 zinc-finger transcription factor, plays a central role in the development of a key innovation, floral nectar spurs, in <i>Aquilegia</i> . Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22552-22560.	3.3	35
39	Understanding the basis of a novel fruit type in Brassicaceae: conservation and deviation in expression patterns of six genes. EvoDevo, 2012, 3, 20.	1.3	34
40	Homologs of the <i>STYLISH</i> gene family control nectary development in <i>Aquilegia</i> . New Phytologist, 2019, 221, 1090-1100.	3.5	34
41	The corona of the daffodil <i>Narcissus bulbocodium</i> shares stamenâ€like identity and is distinct from the orthodox floral whorls. Plant Journal, 2013, 74, 615-625.	2.8	32
42	Methods for Studying the Evolution of Plant Reproductive Structures: Comparative Gene Expression Techniques. Methods in Enzymology, 2005, 395, 617-636.	0.4	30
43	Understanding the development and evolution of novel floral form in Aquilegia. Current Opinion in Plant Biology, 2014, 17, 22-27.	3.5	30
44	Developmental origins of the world's largest flowers, Rafflesiaceae. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 18578-18583.	3.3	29
45	Identification of the Key Regulatory Genes Involved in Elaborate Petal Development and Specialized Character Formation in <i>Nigella</i> damascena (Ranunculaceae). Plant Cell, 2020, 32, 3095-3112.	3.1	27
46	Within and between Whorls: Comparative Transcriptional Profiling of Aquilegia and Arabidopsis. PLoS ONE, 2010, 5, e9735.	1.1	26
47	Molecular evolution of the petal and stamen identity genes, APETALA3 and PISTILLATA, after petal loss in the Piperales. Molecular Phylogenetics and Evolution, 2007, 44, 598-609.	1.2	24
48	Environmental and molecular analysis of the floral transition in the lower eudicot Aquilegia formosa. EvoDevo, 2011, 2, 4.	1.3	24
49	Identification of conserved Aquilegia coerulea microRNAs and their targets. Gene, 2009, 448, 46-56.	1.0	21
50	A role for the Auxin Response Factors <i>ARF6</i> and <i>ARF8</i> homologs in petal spur elongation and nectary maturation in <i>Aquilegia</i> . New Phytologist, 2020, 227, 1392-1405.	3.5	21
51	Pre-meiotic 21-nucleotide reproductive phasiRNAs emerged in seed plants and diversified in flowering plants. Nature Communications, 2021, 12, 4941.	5.8	21
52	Comparative transcriptomics of early petal development across four diverse species of Aquilegia reveal few genes consistently associated with nectar spur development. BMC Genomics, 2019, 20, 668.	1.2	18
53	Gene Duplication and Floral Developmental Genetics of Basal Eudicots. Advances in Botanical Research, 2006, , 353-384.	0.5	17
54	Aquilegia B gene homologs promote petaloidy of the sepals and maintenance of the C domain boundary. EvoDevo, 2017, 8, 22.	1.3	17

#	Article	IF	CITATIONS
55	Plus ça change, plus c'est la même chose: The developmental evolution of flowers. Current Topics in Developmental Biology, 2019, 131, 211-238.	1.0	16
56	Breaking the mold: understanding the evolution and development of lateral organs in diverse plant models. Current Opinion in Genetics and Development, 2016, 39, 79-84.	1.5	15
57	Floral MADS-box Genes in Trioecious Papaya: Characterization of AG and AP1 Subfamily Genes Revealed a Sex-type-specific Gene. Tropical Plant Biology, 2008, 1, 97-107.	1.0	14
58	Virus-Induced Gene Silencing in the Rapid Cycling Columbine Aquilegia coerulea "Origami― Methods in Molecular Biology, 2013, 975, 71-81.	0.4	14
59	The <i>Aquilegia JAGGED</i> homolog promotes proliferation of adaxial cell types in both leaves and stems. New Phytologist, 2017, 216, 536-548.	3.5	14
60	Genetic architecture of floral traits in bee―and hummingbirdâ€pollinated sister species of <i>Aquilegia</i> (columbine). Evolution; International Journal of Organic Evolution, 2021, 75, 2197-2216.	1.1	14
61	A stranger in a strange land: the utility and interpretation of heterologous expression. Frontiers in Plant Science, 2015, 6, 734.	1.7	13
62	Understanding the Genetic Basis of Floral Diversity. BioScience, 2007, 57, 479-487.	2.2	12
63	Transcriptome profiling and weighted gene co-expression network analysis of early floral development in Aquilegia coerulea. Scientific Reports, 2020, 10, 19637.	1.6	12
64	Columbines. Current Biology, 2007, 17, R992-R994.	1.8	9
65	Developmental and molecular characterization of novel staminodes in Aquilegia. Annals of Botany, 2020, 126, 231-243.	1.4	9
66	Chapter 4 New Model Systems for the Study of Developmental Evolution in Plants. Current Topics in Developmental Biology, 2009, 86, 67-105.	1.0	8
67	The MADS-Box Gene Family of the Basal Eudicot and Hybrid <i>Aquilegia coerulea</i> â€~Origami' (Ranunculaceae) ¹ . Annals of the Missouri Botanical Garden, 2014, 99, 313-322.	1.3	8
68	Evolutionary Analysis of Snf1-Related Protein Kinase2 (SnRK2) and Calcium Sensor (SCS) Gene Lineages, and Dimerization of Rice Homologs, Suggest Deep Biochemical Conservation across Angiosperms. Frontiers in Plant Science, 2017, 8, 395.	1.7	7
69	Homologs of LEAFY and UNUSUAL FLORAL ORGANS Promote the Transition From Inflorescence to Floral Meristem Identity in the Cymose Aquilegia coerulea. Frontiers in Plant Science, 2019, 10, 1218.	1.7	7
70	Brassinosteroids regulate petal spur length in <i>Aquilegia</i> by controlling cell elongation. Annals of Botany, 2021, 128, 931-942.	1.4	7
71	Characterization of Aquilegia Polycomb Repressive Complex 2 homologs reveals absence of imprinting. Gene, 2012, 507, 54-60.	1.0	6

72 Floral Patterning and Control of Floral Organ Formation. , 0, , 49-70.

5

#	Article	IF	CITATIONS
73	EVOLUTION: Traversing the Adaptive Landscape in Snapdragons. Science, 2006, 313, 924-925.	6.0	5
74	Quantitative live imaging of floral organ initiation and floral meristem termination in <i>Aquilegia</i> . Development (Cambridge), 2022, 149, .	1.2	5
75	Conserved roles for Polycomb Repressive Complex 2 in the regulation of lateral organ development in Aquilegia x coerulea †Origami'. BMC Plant Biology, 2013, 13, 185.	1.6	4
76	Developmental and Molecular Changes Underlying the Vernalization-Induced Transition to Flowering in Aquilegia coerulea (James). Genes, 2019, 10, 734.	1.0	4
77	Shape and form in plant development. Seminars in Cell and Developmental Biology, 2018, 79, 1-2.	2.3	2
78	Plant evolutionary developmental biology. Introduction to a special issue. New Phytologist, 2017, 216, 335-336.	3.5	1
79	Genetic architecture underlying variation in floral meristem termination in <i>Aquilegia</i> . Journal of Experimental Botany, 2022, 73, 6241-6254.	2.4	1
80	My favourite flowering image: an Aquilegia flower. Journal of Experimental Botany, 2020, 71, e1-e3.	2.4	0
81	Quantitative Live Confocal Imaging in Aquilegia Floral Meristems. Bio-protocol, 2022, 12, .	0.2	0