Delfim Soares

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5151406/publications.pdf Version: 2024-02-01

DELEIM SOADES

#	Article	IF	CITATIONS
1	A novel family of explicit time marching techniques for structural dynamics and wave propagation models. Computer Methods in Applied Mechanics and Engineering, 2016, 311, 838-855.	3.4	74
2	A simple and effective new family of time marching procedures for dynamics. Computer Methods in Applied Mechanics and Engineering, 2015, 283, 1138-1166.	3.4	56
3	3D FEM analysis of the effect of buried phononic crystal barriers on vibration mitigation. Engineering Structures, 2019, 196, 109340.	2.6	38
4	A time domain FEM approach based on implicit Green's functions for non-linear dynamic analysis. International Journal for Numerical Methods in Engineering, 2005, 62, 664-681.	1.5	30
5	Explicit time-domain approaches based on numerical Green's functions computed by finite differences – The ExGA family. Journal of Computational Physics, 2007, 227, 851-870.	1.9	30
6	Dynamic analysis of fluid–soil–structure interaction problems by the boundary element method. Journal of Computational Physics, 2006, 219, 498-512.	1.9	29
7	A simple and effective singleâ€step time marching technique based on adaptive time integrators. International Journal for Numerical Methods in Engineering, 2017, 109, 1344-1368.	1.5	29
8	Initial conditions in frequency-domain analysis: the FEM applied to the scalar wave equation. Journal of Sound and Vibration, 2004, 270, 767-780.	2.1	26
9	An efficient time-domain FEM/BEM coupling approach based on FEM implicit Green's functions and truncation of BEM time convolution process. Computer Methods in Applied Mechanics and Engineering, 2007, 196, 1816-1826.	3.4	26
10	Non-linear elastodynamic analysis by the BEM: an approach based on the iterative coupling of the D-BEM and TD-BEM formulations. Engineering Analysis With Boundary Elements, 2005, 29, 761-774.	2.0	25
11	An optimised FEM–BEM time-domain iterative coupling algorithm for dynamic analyses. Computers and Structures, 2008, 86, 1839-1844.	2.4	25
12	A FEM–BEM coupling procedure to model the propagation of interacting acoustic–acoustic/acoustic–elastic waves through axisymmetric media. Computer Methods in Applied Mechanics and Engineering, 2008, 197, 3828-3835.	3.4	25
13	An optimized BEM–FEM iterative coupling algorithm for acoustic–elastodynamic interaction analyses in the frequency domain. Computers and Structures, 2012, 106-107, 68-80.	2.4	24
14	An adaptive semi-explicit/explicit time marching technique for nonlinear dynamics. Computer Methods in Applied Mechanics and Engineering, 2019, 354, 637-662.	3.4	24
15	An efficient stabilized boundary element formulation for 2D time-domain acoustics and elastodynamics. Computational Mechanics, 2007, 40, 355-365.	2.2	23
16	Acoustic modelling by BEM–FEM coupling procedures taking into account explicit and implicit multiâ€domain decomposition techniques. International Journal for Numerical Methods in Engineering, 2009, 78, 1076-1093.	1.5	23
17	A new family of time marching procedures based on Green's function matrices. Computers and Structures, 2011, 89, 266-276.	2.4	23
18	A model/solutionâ€adaptive explicitâ€implicit timeâ€marching technique for wave propagation analysis. International Journal for Numerical Methods in Engineering, 2019, 119, 590-617.	1.5	23

#	Article	IF	CITATIONS
19	A stabilized central difference scheme for dynamic analysis. International Journal for Numerical Methods in Engineering, 2015, 102, 1750-1760.	1.5	20
20	A novel time-marching formulation for wave propagation analysis: The adaptive hybrid explicit method. Computer Methods in Applied Mechanics and Engineering, 2020, 366, 113095.	3.4	18
21	An explicit family of time marching procedures with adaptive dissipation control. International Journal for Numerical Methods in Engineering, 2014, 100, 165-182.	1.5	17
22	Fluid–structure interaction analysis by optimised boundary element—finite element coupling procedures. Journal of Sound and Vibration, 2009, 322, 184-195.	2.1	16
23	Modified meshless local Petrov–Galerkin formulations for elastodynamics. International Journal for Numerical Methods in Engineering, 2012, 90, 1508-1828.	1.5	16
24	Compression of time-generated matrices in two-dimensional time-domain elastodynamic BEM analysis. International Journal for Numerical Methods in Engineering, 2004, 61, 1209-1218.	1.5	15
25	A time-domain FEM approach based on implicit Green's functions for the dynamic analysis of porous media. Computer Methods in Applied Mechanics and Engineering, 2008, 197, 4645-4652.	3.4	15
26	An efficient multi-time-step implicit–explicit method to analyze solid–fluid coupled systems discretized by unconditionally stable time-domain finite element procedures. Computers and Structures, 2010, 88, 387-394.	2.4	15
27	Frequency domain analysis of acoustic wave propagation in heterogeneous media considering iterative coupling procedures between the method of fundamental solutions and Kansa's method. International Journal for Numerical Methods in Engineering, 2012, 89, 914-938.	1.5	15
28	A coupled MFS–FEM model for 2-D dynamic soil–structure interaction in the frequency domain. Computers and Structures, 2013, 129, 74-85.	2.4	15
29	Iterative dynamic analysis of linear and nonlinear fully saturated porous media considering edge-based smoothed meshfree techniques. Computer Methods in Applied Mechanics and Engineering, 2013, 253, 73-88.	3.4	15
30	FEM-BEM iterative coupling procedures to analyze interacting wave propagation models: fluid-fluid, solid-solid and fluid-solid analyses. Coupled Systems Mechanics, 2012, 1, 19-37.	0.4	15
31	Numerical modelling of acoustic–elastodynamic coupled problems by stabilized boundary element techniques. Computational Mechanics, 2008, 42, 787-802.	2.2	14
32	Nonâ€linear dynamic analyses by meshless local Petrov–Galerkin formulations. International Journal for Numerical Methods in Engineering, 2010, 81, 1687-1699.	1.5	14
33	Coupled Numerical Methods to Analyze Interacting Acoustic-Dynamic Models by Multidomain Decomposition Techniques. Mathematical Problems in Engineering, 2011, 2011, 1-28.	0.6	14
34	An Overview of Recent Advances in the Iterative Analysis of Coupled Models for Wave Propagation. Journal of Applied Mathematics, 2014, 2014, 1-21.	0.4	14
35	Efficient analysis of sound propagation in sonic crystals using an ACA–MFS approach. Engineering Analysis With Boundary Elements, 2016, 69, 72-85.	2.0	14
36	An efficient time/frequency domain algorithm for modal analysis of non-linear models discretized by the FEM. Computer Methods in Applied Mechanics and Engineering, 2003, 192, 3731-3745.	3.4	13

#	Article	IF	CITATIONS
37	A frequency-domain FEM approach based on implicit Green's functions for non-linear dynamic analysis. International Journal of Solids and Structures, 2005, 42, 6003-6014.	1.3	13
38	Nonlinear structural dynamic analysis by a stabilized central difference method. Engineering Structures, 2018, 173, 383-392.	2.6	13
39	A time-domain boundary element formulation for the dynamic analysis of non-linear porous media. Engineering Analysis With Boundary Elements, 2006, 30, 363-370.	2.0	12
40	An efficient time-truncated boundary element formulation applied to the solution of the two-dimensional scalar wave equation. Engineering Analysis With Boundary Elements, 2009, 33, 43-53.	2.0	12
41	A multi-level explicit time-marching procedure for structural dynamics and wave propagation models. Computer Methods in Applied Mechanics and Engineering, 2021, 375, 113647.	3.4	12
42	Three novel truly-explicit time-marching procedures considering adaptive dissipation control. Engineering With Computers, 2022, 38, 3251-3268.	3.5	12
43	Numerical computation of internal stress and velocity in time-domain¶bem formulation for elastodynamics. Computational Mechanics, 2002, 30, 38-47.	2.2	11
44	Frequency domain analysis of interacting acoustic–elastodynamic models taking into account optimized iterative coupling of different numerical methods. Engineering Analysis With Boundary Elements, 2013, 37, 1074-1088.	2.0	11
45	Time-domain electromagnetic wave propagation analysis by edge-based smoothed point interpolation methods. Journal of Computational Physics, 2013, 234, 472-486.	1.9	11
46	Numerical study towards the use of a SH wave ultrasonic-based strategy for crack detection in concrete structures. Engineering Structures, 2013, 49, 782-791.	2.6	10
47	A locally stabilized central difference method. Finite Elements in Analysis and Design, 2019, 155, 1-10.	1.7	10
48	Boundary elements with equilibrium satisfaction—a consistent formulation for dynamic problems considering non-linear effects. International Journal for Numerical Methods in Engineering, 2006, 65, 701-713.	1.5	9
49	Nonlinear dynamic analysis considering explicit and implicit time marching techniques with adaptive time integration parameters. Acta Mechanica, 2018, 229, 2097-2116.	1.1	9
50	A novel single-step explicit time-marching procedure with improved dissipative, dispersive and stability properties. Computer Methods in Applied Mechanics and Engineering, 2021, 386, 114077.	3.4	9
51	A boundary element formulation with equilibrium satisfaction for thermo-mechanical problems considering transient and non-linear aspects. Engineering Analysis With Boundary Elements, 2007, 31, 942-948.	2.0	8
52	A time-marching scheme based on implicit Green's functions for elastodynamic analysis with the domain boundary element method. Computational Mechanics, 2007, 40, 827-835.	2.2	8
53	Drop deformation in Stokes flow through converging channels. Engineering Analysis With Boundary Elements, 2009, 33, 993-1000.	2.0	8
54	A smoothed radial point interpolation method for application in porodynamics. Computational Mechanics, 2012, 50, 433-443.	2.2	8

#	Article	IF	CITATIONS
55	Inelastic 2D analysis by adaptive iterative BEM–FEM coupling procedures. Computers and Structures, 2015, 156, 134-148.	2.4	8
56	Dynamic analysis of elastoplastic models considering combined formulations of the time-domain boundary element method. Engineering Analysis With Boundary Elements, 2015, 55, 28-39.	2.0	8
57	An enhanced explicit time-marching technique for wave propagation analysis considering adaptive time integrators. Computer Methods in Applied Mechanics and Engineering, 2020, 363, 112882.	3.4	8
58	An XFEM multilayered heaviside enrichment for fracture propagation with reduced enhanced degrees of freedom. International Journal for Numerical Methods in Engineering, 2021, 122, 3425-3447.	1.5	8
59	Dynamic elastoplastic analysis by a hybrid BEM–FEM time-domain formulation. International Journal of Solids and Structures, 2008, 45, 4474-4483.	1.3	7
60	Heat conduction analysis by adaptive iterative BEM-FEM coupling procedures. Engineering Analysis With Boundary Elements, 2016, 73, 79-94.	2.0	7
61	An implicit family of time marching procedures with adaptive dissipation control. Applied Mathematical Modelling, 2016, 40, 3325-3341.	2.2	7
62	Numerical simulation of soil-structure elastodynamic interaction using iterative-adaptive BEM-FEM coupled strategies. Engineering Analysis With Boundary Elements, 2017, 82, 141-161.	2.0	7
63	Efficient high-order accurate explicit time-marching procedures for dynamic analyses. Engineering With Computers, 2022, 38, 773-787.	3.5	7
64	DYNAMIC ELASTOPLASTIC ANALYSES BY SMOOTHED POINT INTERPOLATION METHODS. International Journal of Computational Methods, 2013, 10, 1350030.	0.8	6
65	A more flexible and effective analysis of porous media considering edge-based smoothed meshfree techniques. Computational Mechanics, 2014, 53, 1265-1277.	2.2	6
66	Iterative analysis of pore-dynamic models discretized by finite elements. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38, 391-405.	1.7	6
67	An effective adaptive time domain formulation to analyse acoustic–elastodynamic coupled models. Computers and Structures, 2017, 189, 1-11.	2.4	6
68	Solution of hyperbolic bioheat conduction models based on adaptive time integrators. Finite Elements in Analysis and Design, 2018, 149, 1-14.	1.7	6
69	Numerical modelling for prediction of ground-borne vibrations induced by pile driving. Engineering Structures, 2021, 242, 112533.	2.6	6
70	Solution of time-domain acoustic wave propagation problems using a RBF interpolation model with "a priori―estimation of the free parameter. Wave Motion, 2011, 48, 423-440.	1.0	5
71	Electromagnetic wave propagation analysis by an explicit adaptive technique based on connected space-time discretizations. Finite Elements in Analysis and Design, 2018, 141, 1-16.	1.7	5
72	An explicit direct FEM–BEM coupling procedure for nonlinear dynamics. Engineering Analysis With Boundary Elements, 2019, 103, 94-100.	2.0	5

#	Article	IF	CITATIONS
73	A locally stabilized explicit approach for nonlinear heat conduction analysis. Computers and Structures, 2019, 214, 40-47.	2.4	5
74	A straightforward high-order accurate time-marching procedure for dynamic analyses. Engineering With Computers, 2022, 38, 1659-1677.	3.5	5
75	Two Efficient Time-Marching Explicit Procedures Considering Spatially/Temporally-Defined Adaptive Time-Integrators. International Journal of Computational Methods, 2022, 19, .	0.8	5
76	A novel conjoined space–time formulation for explicit analyses of dynamic models. Engineering With Computers, 2023, 39, 2109-2123.	3.5	5
77	An improved adaptive formulation for explicit analyses of wave propagation models considering locally-defined self-adjustable time-integration parameters. Computer Methods in Applied Mechanics and Engineering, 2022, 399, 115324.	3.4	5
78	An efficient staggered time-marching procedure for porodynamics. Computer Methods in Applied Mechanics and Engineering, 2015, 297, 1-17.	3.4	4
79	An Efficient MFS Formulation for the Analysis of Acoustic Scattering by Periodic Structures. Journal of Theoretical and Computational Acoustics, 2018, 26, 1850003.	0.5	4
80	An enhanced explicit technique for the solution of non-Fourier heat transfer problems. Advances in Engineering Software, 2018, 122, 13-21.	1.8	4
81	Nonlinear analysis of non-Fourier heat conduction problems by a locally stabilized explicit approach. Advances in Engineering Software, 2020, 139, 102735.	1.8	4
82	Nonlinear analysis of interacting saturated porous and elastic media by time-domain FEM/BEM iterative coupling procedures. Engineering Analysis With Boundary Elements, 2020, 117, 299-308.	2.0	4
83	Photogrammetric Process to Monitor Stress Fields Inside Structural Systems. Sensors, 2021, 21, 4023.	2.1	4
84	Elastodynamic wave propagation modelling in geological structures considering fully-adaptive explicit time-marching procedures. Soil Dynamics and Earthquake Engineering, 2021, 150, 106962.	1.9	4
85	AN EFFICIENT SMOOTHED POINT INTERPOLATION METHOD FOR DYNAMIC ANALYSES. International Journal of Computational Methods, 2013, 10, 1340007.	0.8	3
86	A Simple Explicit–Implicit Time-Marching Technique for Wave Propagation Analysis. International Journal of Computational Methods, 2019, 16, 1850082.	0.8	3
87	An Optimized Explicit–Implicit Time-Marching Formulation for Dynamic Analysis. International Journal of Computational Methods, 2021, 18, 2050045.	0.8	3
88	Analytical time integration for BEM axisymmetric acoustic modelling. International Journal for Numerical Methods in Engineering, 2008, 73, 1989-2010.	1.5	2
89	Boundary elements with equilibrium satisfaction: a consistent formulation for plate bending analysis considering Reissner's theory. Computational Mechanics, 2009, 43, 443-450.	2.2	2
90	Coupled Numerical Methods in Engineering Analysis. Mathematical Problems in Engineering, 2011, 2011, 1-4.	0.6	2

#	Article	IF	CITATIONS
91	A simple non-iterative uncoupled algorithm for nonlinear pore-dynamic analyses. Computer Methods in Applied Mechanics and Engineering, 2019, 357, 112593.	3.4	2
92	An uncoupled numerical approach for soil consolidation analysis. Computers and Geotechnics, 2019, 111, 255-260.	2.3	2
93	A locally stabilized explicit approach for coupled thermo-mechanical analysis. Advances in Engineering Software, 2020, 149, 102883.	1.8	2
94	Iterative coupling between the MFS and Kansa's method for acoustic problems. WIT Transactions on Modelling and Simulation, 2013, , .	0.0	2
95	A stabilized explicit approach to efficiently analyse wave propagation through coupled fluid–structure models. Computer Methods in Applied Mechanics and Engineering, 2019, 356, 528-547.	3.4	1
96	Nonlinear porodynamic analysis by adaptive semi-explicit/explicit time marching formulations. Acta Geotechnica, 2021, 16, 1879-1894.	2.9	1
97	An enhanced explicit time-marching procedure to analyse acoustic–elastodynamic coupled models. Computer Methods in Applied Mechanics and Engineering, 2021, 375, 113630.	3.4	1
98	A hybrid self-adjustable explicit–explicit–implicit time marching formulation for wave propagation analyses. Computer Methods in Applied Mechanics and Engineering, 2022, 398, 115188.	3.4	1
99	Advanced Techniques in Computational Mechanics. Journal of Applied Mathematics, 2014, 2014, 1-2.	0.4	0
100	A coupled BEM/FEM formulation for drop interaction in Stokes flows with flexible and slip confining boundaries. Engineering Analysis With Boundary Elements, 2017, 77, 112-122.	2.0	0
101	An Efficient MFS Formulation for the Analysis of Acoustic Scattering by Periodic Structures. Journal of Computational Acoustics, 0, , 1850003.	1.0	0
102	A locally defined time-marching technique for structural dynamics. MATEC Web of Conferences, 2018, 211, 17004.	0.1	0
103	Adaptive Analysis of Acoustic-Elastodynamic Interacting Models Considering Frequency Domain MFS-FEM Coupled Formulations. Mathematical Problems in Engineering, 2019, 2019, 1-18.	0.6	0
104	An efficient adaptive time-marching formulation for decoupled analysis of generalized thermo-mechanical models. Acta Mechanica, 2020, 231, 4479-4495.	1.1	0
105	A novel truly explicit time-marching procedure for simple and effective analyses of wave propagation models. Engineering With Computers, 0, , 1.	3.5	0
106	Locally-enriched procedure to simulate acoustic wave propagation in discontinuous media. Journal of Sound and Vibration, 2021, 500, 116038.	2.1	0
107	Iterative coupling in fluid-structure interaction: a BEM-FEM based approach. WIT Transactions on Modelling and Simulation, 2006, , .	0.0	0
108	Axisymmetric Acoustic Modelling by Time-Domain Boundary Element Techniques. , 2009, , 319-337.		0

#	Article	IF	CITATIONS
109	Wave propagation analysis with adaptive time integration parameters. , 0, , .		0
110	An ACA-MFS approach for the analysis of sound propagation in sonic crystals. WIT Transactions on Modelling and Simulation, 2015, , .	0.0	0
111	Elastodynamic analysis by a frequency-domain FEM-BEM iterative coupling procedure. Coupled Systems Mechanics, 2015, 4, 263-277.	0.4	0