R J Dohmen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5151306/publications.pdf

Version: 2024-02-01

		109321	168389
57	5,007 citations	35	53
papers	citations	h-index	g-index
Γ0	Γ0	Γ0	4505
58	58	58	4585
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	The ubiquitin-like protein Smt3p is activated for conjugation to other proteins by an Aos1p/Uba2p heterodimer. EMBO Journal, 1997, 16, 5509-5519.	7.8	485
2	An efficient transformation procedure enabling long-term storage of competent cells of various yeast genera. Yeast, 1991, 7, 691-692.	1.7	391
3	Heat-inducible degron: a method for constructing temperature-sensitive mutants. Science, 1994, 263, 1273-1276.	12.6	347
4	Ump1p Is Required for Proper Maturation of the 20S Proteasome and Becomes Its Substrate upon Completion of the Assembly. Cell, 1998, 92, 489-499.	28.9	298
5	Ubiquitin-dependent Proteolytic Control of SUMO Conjugates. Journal of Biological Chemistry, 2007, 282, 34167-34175.	3.4	274
6	The N-end rule is mediated by the UBC2(RAD6) ubiquitin-conjugating enzyme Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 7351-7355.	7.1	264
7	Cdc48p interacts with Ufd3p, a WD repeat protein required for ubiquitin-mediated proteolysis in Saccharomyces cerevisiae EMBO Journal, 1996, 15, 4884-4899.	7.8	237
8	SUMO protein modification. Biochimica Et Biophysica Acta - Molecular Cell Research, 2004, 1695, 113-131.	4.1	222
9	SUMO-targeted ubiquitin ligases. Biochimica Et Biophysica Acta - Molecular Cell Research, 2014, 1843, 75-85.	4.1	202
10	An Essential Yeast Gene Encoding a Homolog of Ubiquitin-activating Enzyme. Journal of Biological Chemistry, 1995, 270, 18099-18109.	3.4	190
11	Catalytic Mechanism and Assembly of the Proteasome. Chemical Reviews, 2009, 109, 1509-1536.	47.7	159
12	SUMO playing tag with ubiquitin. Trends in Biochemical Sciences, 2012, 37, 23-31.	7.5	139
13	Polyamines regulate their synthesis by inducing expression and blocking degradation of ODC antizyme. EMBO Journal, 2004, 23, 4857-4867.	7.8	122
14	SUMO conjugation and deconjugation. Molecular Genetics and Genomics, 2000, 263, 771-786.	2.4	110
15	Arsenic trioxide stimulates SUMOâ€2/3 modification leading to RNF4â€dependent proteolytic targeting of PML. FEBS Letters, 2008, 582, 3174-3178.	2.8	92
16	Polyamine sensing by nascent ornithine decarboxylase antizyme stimulates decoding of its mRNA. Nature, 2011, 477, 490-494.	27.8	91
17	Identification and characterization of a mammalian protein interacting with 20S proteasome precursors. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 10348-10353.	7.1	84
18	Hsp70 nucleotide exchange factor Fes1 is essential for ubiquitin-dependent degradation of misfolded cytosolic proteins. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5975-5980.	7.1	83

#	Article	IF	CITATIONS
19	Ubiquitin-proteasome system. Cellular and Molecular Life Sciences, 2004, 61, 1562-78.	5.4	81
20	The C-terminal Extension of the \hat{I}^27 Subunit and Activator Complexes Stabilize Nascent 20 S Proteasomes and Promote Their Maturation. Journal of Biological Chemistry, 2007, 282, 34869-34876.	3.4	81
21	Cloning of the Schwanniomyces occidentalis glucoamylase gene (GAM1) and its expression in Saccharomyces cerevisiae. Gene, 1990, 95, 111-121.	2.2	80
22	Regulatory mechanisms controlling biogenesis of ubiquitin and the proteasome. FEBS Letters, 2004, 567, 259-264.	2.8	79
23	A Lack of SUMO Conjugation Affects cNLS-dependent Nuclear Protein Import in Yeast. Journal of Biological Chemistry, 2002, 277, 49554-49561.	3.4	63
24	Role of C-terminal Extensions of Subunits \hat{l}^22 and \hat{l}^27 in Assembly and Activity of Eukaryotic Proteasomes. Journal of Biological Chemistry, 2004, 279, 14323-14330.	3.4	59
25	PACemakers of Proteasome Core Particle Assembly. Structure, 2008, 16, 1296-1304.	3.3	58
26	Biting the hand that feeds: Rpn4-dependent feedback regulation of proteasome function. Biochimica Et Biophysica Acta - Molecular Cell Research, 2007, 1773, 1599-1604.	4.1	56
27	Arkadia/RNF111 is a SUMO-targeted ubiquitin ligase with preference for substrates marked with SUMO1-capped SUMO2/3 chain. Nature Communications, 2019, 10, 3678.	12.8	56
28	Sumoylation as a Signal for Polyubiquitylation and Proteasomal Degradation. Sub-Cellular Biochemistry, 2010, 54, 195-214.	2.4	55
29	Distinct roles for Arabidopsis SUMO protease ESD4 and its closest homolog ELS1. Planta, 2011, 233, 63-73.	3.2	52
30	Phenotypes on demand via switchable target protein degradation in multicellular organisms. Nature Communications, 2016, 7, 12202.	12.8	50
31	Regulated overproduction of ?-amylase by transformation of the amylolytic yeast Schwanniomyces occidentalis. Current Genetics, 1989, 15, 319-325.	1.7	48
32	Heatâ€Inducible Degron and the Making of Conditional Mutants. Methods in Enzymology, 2005, 399, 799-822.	1.0	43
33	Proteasome assembly from 15S precursors involves major conformational changes and recycling of the Pba1–Pba2 chaperone. Nature Communications, 2015, 6, 6123.	12.8	42
34	Analysis of the alpha-amylase gene of Schwanniomyces occidentalis and the secretion of its gene product in transformants of different yeast genera. FEBS Journal, 1989, 184, 699-706.	0.2	41
35	The N-Terminal Unstructured Domain of Yeast ODC Functions as a Transplantable and Replaceable Ubiquitin-Independent Degron. Journal of Molecular Biology, 2011, 407, 354-367.	4.2	41
36	Proteomics analyses of microvesicles released by $\langle i \rangle$ Drosophila $\langle i \rangle$ Kc167 and S2 cells. Proteomics, 2011, 11, 4397-4410.	2.2	36

#	Article	IF	CITATIONS
37	Multivalent interactions of the SUMO-interaction motifs in RING finger protein 4 determine the specificity for chains of the SUMO. Biochemical Journal, 2014, 457, 207-214.	3.7	36
38	Chaperone-assisted assembly of the proteasome core particle. Biochemical Society Transactions, 2010, 38, 29-33.	3.4	24
39	A Conserved Protein with AN1 Zinc Finger and Ubiquitin-like Domains Modulates Cdc48 (p97) Function in the Ubiquitin-Proteasome Pathway. Journal of Biological Chemistry, 2013, 288, 33682-33696.	3.4	23
40	BIOCHEMICAL AND BIOPHYSICAL CHARACTERIZATION OF RECOMBINANT YEAST PROTEASOME MATURATION FACTOR UMP1. Computational and Structural Biotechnology Journal, 2013, 7, e201304006.	4.1	20
41	In Vitro Studies Reveal a Sequential Mode of Chain Processing by the Yeast SUMO (Small) Tj ETQq1 1 0.784314 r	gBT /Over 3.4	lock 10 Tf 5
42	Polyamines directly promote antizyme-mediated degradation of ornithine decarboxylase by the proteasome. Microbial Cell, 2015, 2, 197-207.	3.2	12
43	Dual role of a GTPase conformational switch for membrane fusion by mitofusin ubiquitylation. Life Science Alliance, 2020, 3, e201900476.	2.8	10
44	Assays for Proteasome Assembly and Maturation. , 2005, 301, 243-254.		9
45	Hsm3/S5b Joins the Ranks of 26S Proteasome Assembly Chaperones. Molecular Cell, 2009, 33, 415-416.	9.7	8
46	Methods to study SUMO dynamics in yeast. Methods in Enzymology, 2019, 618, 187-210.	1.0	7
47	Inducible Degron and Its Application to Creating Conditional Mutants. , 2006, 313, 145-160.		6
48	Interaction with the Assembly Chaperone Ump1 Promotes Incorporation of the \hat{I}^27 Subunit into Half-Proteasome Precursor Complexes Driving Their Dimerization. Biomolecules, 2022, 12, 253.	4.0	6
49	Curative Treatment of POMP-Related Autoinflammation and Immune Dysregulation (PRAID) by Hematopoietic Stem Cell Transplantation. Journal of Clinical Immunology, 2021, 41, 1664-1667.	3.8	5
50	Ribosomeâ€associated quality control mediates degradation of the premature translation termination product Orf1p of ODC antizyme mRNA. FEBS Letters, 2021, 595, 2015-2033.	2.8	4
51	SUMO wrestles down myc. Cell Cycle, 2015, 14, 2551-2552.	2.6	2
52	Starting with a degron: N-terminal formyl-methionine of nascent bacterial proteins contributes to their proteolytic control. Microbial Cell, 2015, 2, 356-359.	3.2	2
53	Analysis of Cellular SUMO and SUMO–Ubiquitin Hybrid Conjugates. Methods in Molecular Biology, 2012, 832, 81-92.	0.9	1
54	In Vitro Characterization of Chain Depolymerization Activities of SUMO-Specific Proteases. Methods in Molecular Biology, 2016, 1475, 123-135.	0.9	1

R J DOHMEN

#	Article	IF	CITATIONS
55	Analysis of Cotranslational Polyamine Sensing During Decoding of ODC Antizyme mRNA. Methods in Molecular Biology, 2018, 1694, 309-323.	0.9	1
56	Co-translational Polyamine Sensing by Nascent ODC Antizyme. , 2014, , 203-222.		1
57	Ultrafiltration-based in vitro assay for determining polyamine binding to proteins. Protocol Exchange, 0 , , .	0.3	O