Juli Pereto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5151049/publications.pdf

Version: 2024-02-01

87	3,599	28	57
papers	citations	h-index	g-index
103	103	103	3910 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	Living in a bottle: Bacteria from sedimentâ€associated Mediterranean waste and potential growth on polyethylene terephthalate. MicrobiologyOpen, 2022, 11, e1259.	1.2	13
2	Sagittula salina sp. nov., isolated from marine waste. International Journal of Systematic and Evolutionary Microbiology, 2022, 72, .	0.8	4
3	The car tank lid bacteriome: a reservoir of bacteria with potential in bioremediation of fuel. Npj Biofilms and Microbiomes, 2022, 8, 32.	2.9	6
4	Transmetabolism: the nonâ€conformist approach to biotechnology. Microbial Biotechnology, 2021, 14, 41-44.	2.0	3
5	Prokaryotic symbiotic consortia and the origin of nucleated cells: A critical review of Lynn Margulis hypothesis. BioSystems, 2021, 204, 104408.	0.9	11
6	Belnapia mucosa sp. nov. and Belnapia arida sp. nov., isolated from desert biocrust. International Journal of Systematic and Evolutionary Microbiology, 2021, 71, .	0.8	7
7	Xerotolerance: A New Property in Exiguobacterium Genus. Microorganisms, 2021, 9, 2455.	1.6	8
8	The rose and the name: the unresolved debate on biotechnological terms. Microbial Biotechnology, 2020, 13, 305-310.	2.0	2
9	Extremophilic microbial communities on photovoltaic panel surfaces: a twoâ€year study. Microbial Biotechnology, 2020, 13, 1819-1830.	2.0	13
10	Kineococcus vitellinus sp. nov., Kineococcus indalonis sp. nov. and Kineococcus siccus sp. nov., Isolated Nearby the Tabernas Desert (AlmerÃa, Spain). Microorganisms, 2020, 8, 1547.	1.6	15
11	Crystals and the debates on the nature, recognition and origin of life. Physics of Life Reviews, 2020, 34-35, 86-88.	1.5	1
12	High Culturable Bacterial Diversity From a European Desert: The Tabernas Desert. Frontiers in Microbiology, 2020, 11, 583120.	1.5	34
13	Sphingomonas solaris sp. nov., isolated from a solar panel in Boston, Massachusetts. International Journal of Systematic and Evolutionary Microbiology, 2020, 70, 1814-1821.	0.8	12
14	Can life be standardized? Current challenges in biological standardization. Metode, 2020, , .	0.0	0
15	Hidden Concepts in the History and Philosophy of Origins-of-Life Studies: a Workshop Report. Origins of Life and Evolution of Biospheres, 2019, 49, 111-145.	0.8	19
16	Bioprospecting the Solar Panel Microbiome: High-Throughput Screening for Antioxidant Bacteria in a Caenorhabditis elegans Model. Frontiers in Microbiology, 2019, 10, 986.	1.5	6
17	Microbial communities of the Mediterranean rocky shore: ecology and biotechnological potential of the seaâ€land transition. Microbial Biotechnology, 2019, 12, 1359-1370.	2.0	4
18	Gene connectivity and enzyme evolution in the human metabolic network. Biology Direct, 2019, 14, 17.	1.9	11

#	Article	IF	CITATIONS
19	Vida fabricada. Metode, 2019, , .	0.0	O
20	Polar solar panels: <scp>A</scp> rctic and <scp>A</scp> ntarctic microbiomes display similar taxonomic profiles. Environmental Microbiology Reports, 2018, 10, 75-79.	1.0	25
21	Methanogenesis on Early Stages of Life: Ancient but Not Primordial. Origins of Life and Evolution of Biospheres, 2018, 48, 407-420.	0.8	16
22	Influence of pathway topology and functional class on the molecular evolution of human metabolic genes. PLoS ONE, 2018, 13, e0208782.	1.1	3
23	Creating life and the media: translations and echoes. Life Sciences, Society and Policy, 2018, 14, 19.	3.1	4
24	On the origin of mitosing cells: A historical appraisal of Lynn Margulis endosymbiotic theory. Journal of Theoretical Biology, 2017, 434, 80-87.	0.8	30
25	Determinism and Contingency Shape Metabolic Complementation in an Endosymbiotic Consortium. Frontiers in Microbiology, 2017, 8, 2290.	1.5	5
26	From grass to gas: microbiome dynamics of grass biomass acidification under mesophilic and thermophilic temperatures. Biotechnology for Biofuels, 2017, 10, 171.	6.2	43
27	Metabolic Complementation in Bacterial Communities: Necessary Conditions and Optimality. Frontiers in Microbiology, 2016, 7, 1553.	1.5	17
28	Erasing Borders: A Brief Chronicle of Early Synthetic Biology. Journal of Molecular Evolution, 2016, 83, 176-183.	0.8	15
29	A highly diverse, desert-like microbial biocenosis on solar panels in a Mediterranean city. Scientific Reports, 2016, 6, 29235.	1.6	39
30	Nature lessons: The whitefly bacterial endosymbiont is a minimal amino acid factory with unusual energetics. Journal of Theoretical Biology, 2016, 407, 303-317.	0.8	8
31	Nature versus design: synthetic biology or how to build a biological non-machine. Integrative Biology (United Kingdom), 2016, 8, 451-455.	0.6	18
32	A reconciliation with Darwin? Divergent views on evolutionism in Erich Wasmann and Jaime Pujiula, biologists and Jesuits. Metode, 2016, .	0.0	2
33	Small genomes and the difficulty to define minimal translation and metabolic machineries. Frontiers in Ecology and Evolution, 2015, 3, .	1.1	9
34	Standards not that standard. Journal of Biological Engineering, 2015, 9, 17.	2.0	19
35	Consistency Analysis of Genome-Scale Models of Bacterial Metabolism: A Metamodel Approach. PLoS ONE, 2015, 10, e0143626.	1.1	7
36	Engineering Bacteria to Form a Biofilm and Induce Clumping in <i>Caenorhabditis elegans</i> Synthetic Biology, 2014, 3, 941-943.	1.9	2

#	Article	IF	CITATIONS
37	Synthetic Biology. SpringerBriefs in Biochemistry and Molecular Biology, 2014, , .	0.3	8
38	Biochemistry and evolutionary biology: Two disciplines that need each other. Journal of Biosciences, 2014, 39, 13-27.	0.5	6
39	The cockroach <i>Blattella germanica</i> obtains nitrogen from uric acid through a metabolic pathway shared with its bacterial endosymbiont. Biology Letters, 2014, 10, 20140407.	1.0	50
40	Herrera's 'Plasmogenia' and Other Collected Works. , 2014, , .		11
41	A phylogenetic approach to the early evolution of autotrophy: the case of the reverse TCA and the reductive acetyl-CoA pathways. International Microbiology, 2014, 17, 91-7.	1.1	18
42	What Is Life?. SpringerBriefs in Biochemistry and Molecular Biology, 2014, , 23-32.	0.3	0
43	Are We Doing Synthetic Biology?. SpringerBriefs in Biochemistry and Molecular Biology, 2014, , 63-68.	0.3	0
44	Solving gap metabolites and blocked reactions in genome-scale models: application to the metabolic network of Blattabacterium cuenoti. BMC Systems Biology, 2013, 7, 114.	3.0	20
45	Comparative Genomics of Blattabacterium cuenoti: The Frozen Legacy of an Ancient Endosymbiont Genome. Genome Biology and Evolution, 2013, 5, 351-361.	1.1	64
46	Out of fuzzy chemistry: from prebiotic chemistry to metabolic networks. Chemical Society Reviews, 2012, 41, 5394.	18.7	77
47	Darwinism and the Origin of Life. Evolution: Education and Outreach, 2012, 5, 337-341.	0.3	3
48	Are we doing synthetic biology?. Systems and Synthetic Biology, 2012, 6, 79-83.	1.0	14
49	Metabolic stasis in an ancient symbiosis: genome-scale metabolic networks from two Blattabacterium cuenoti strains, primary endosymbionts of cockroaches. BMC Microbiology, 2012, 12, S5.	1.3	38
50	Metabolic Networks of Sodalis glossinidius: A Systems Biology Approach to Reductive Evolution. PLoS ONE, 2012, 7, e30652.	1.1	39
51	Origin and evolution of metabolisms. , 2011, , 270-288.		6
52	Phylogenomic Evidence for the Presence of a Flagellum and cbb3 Oxidase in the Free-Living Mitochondrial Ancestor. Molecular Biology and Evolution, 2011, 28, 3285-3296.	3.5	124
53	Microbial Diversity in the Midguts of Field and Lab-Reared Populations of the European Corn Borer Ostrinia nubilalis. PLoS ONE, 2011, 6, e21751.	1.1	71
54	Metalloproteins and the Pyrite-based Origin of Life: A Critical Assessment. Origins of Life and Evolution of Biospheres, 2011, 41, 347-356.	0.8	2

#	Article	IF	Citations
55	Blueprint for a minimal photoautotrophic cell: conserved and variable genes in Synechococcus elongatus PCC 7942. BMC Genomics, 2011, 12, 25.	1.2	8
56	Genome Economization in the Endosymbiont of the Wood Roach Cryptocercus punctulatus Due to Drastic Loss of Amino Acid Synthesis Capabilities. Genome Biology and Evolution, 2011, 3, 1437-1448.	1.1	35
57	Serratia symbiotica from the Aphid Cinara cedri: A Missing Link from Facultative to Obligate Insect Endosymbiont. PLoS Genetics, 2011, 7, e1002357.	1.5	208
58	Should the Teaching of Biological Evolution Include the Origin of Life?. Evolution: Education and Outreach, 2010, 3, 661-667.	0.3	6
59	Defining Life or Bringing Biology to Life. Origins of Life and Evolution of Biospheres, 2010, 40, 203-213.	0.8	22
60	A universal definition of life: autonomy and open-ended evolution., 2010,, 310-325.		1
61	Charles Darwin and the Origin of Life. Origins of Life and Evolution of Biospheres, 2009, 39, 395-406.	0.8	74
62	The Evolutionary History of Lysine Biosynthesis Pathways Within Eukaryotes. Journal of Molecular Evolution, 2009, 69, 240-248.	0.8	32
63	Goethe's dream. EMBO Reports, 2009, 10, S28-32.	2.0	15
64	Toward minimal bacterial cells: evolution vs. design. FEMS Microbiology Reviews, 2009, 33, 225-235.	3.9	97
65	Yeast cultures with UCP1 uncoupling activity as a heating device. New Biotechnology, 2009, 26, 300-306.	2.4	7
66	Evolutionary Convergence and Nitrogen Metabolism in Blattabacterium strain Bge, Primary Endosymbiont of the Cockroach Blattella germanica. PLoS Genetics, 2009, 5, e1000721.	1.5	134
67	Evolutionary theory: it's on the school syllabus in Mexico. Nature, 2008, 453, 719-719.	13.7	2
68	Learning how to live together: genomic insights into prokaryote–animal symbioses. Nature Reviews Genetics, 2008, 9, 218-229.	7.7	465
69	The Core of a Minimal Gene Set: Insights from Natural Reduced Genomes. , 2008, , 347-366.		1
70	Structural analyses of a hypothetical minimal metabolism. Philosophical Transactions of the Royal Society B: Biological Sciences, 2007, 362, 1751-1762.	1.8	39
71	The Renaissance of Synthetic Biology. Biological Theory, 2007, 2, 128-130.	0.8	31
72	The frontier between cell and organelle: genome analysis of Candidatus Carsonella ruddii. BMC Evolutionary Biology, 2007, 7, 181.	3.2	106

#	Article	IF	CITATIONS
73	Energetically Plausible Model of a Self-Maintaining Protocellular System. Bulletin of Mathematical Biology, 2007, 69, 1423-1445.	0.9	7
74	Prebiotic Chemistry — Biochemistry — Emergence of Life (4.4-2 Ga). , 2006, , 153-203.		1
75	5. Prebiotic Chemistry – Biochemistry – Emergence of Life (4.4–2 Ga). Earth, Moon and Planets, 2006, 98, 153-203.	0.3	14
76	Phylogenetic Analysis of Eukaryotic Thiolases Suggests Multiple Proteobacterial Origins. Journal of Molecular Evolution, 2005, 61, 65-74.	0.8	48
77	Controversies on the origin of life. International Microbiology, 2005, 8, 23-31.	1.1	58
78	Determination of the Core of a Minimal Bacterial Gene Set. Microbiology and Molecular Biology Reviews, 2004, 68, 518-537.	2.9	503
79	Ancestral lipid biosynthesis and early membrane evolution. Trends in Biochemical Sciences, 2004, 29, 469-477.	3.7	252
80	A Universal Definition of Life: Autonomy and Open-Ended Evolution. Origins of Life and Evolution of Biospheres, 2004, 34, 323-346.	0.8	282
81	Designing a Simulation Model of a Self-Maintaining Cellular System. Lecture Notes in Computer Science, 1999, , 379-388.	1.0	2
82	Nuclear factors binding to the extensin promoter exhibit differential activity in carrot protoplasts and cells. Plant Molecular Biology, 1992, 18, 739-748.	2.0	11
83	Sucrose Loading in Isolated Veins of Pisum sativum: Regulation by Abscisic Acid, Gibberellic Acid, and Cell Turgor. Plant Physiology, 1989, 91, 259-265.	2.3	39
84	The source of gibberellins in the parthenocarpic development of ovaries on topped pea plants. Planta, 1988, 175, 493-499.	1.6	17
85	The products of photosynthetic fixation of CO2 in plants. Trends in Biochemical Sciences, 1987, 12, 3.	3.7	8
86	Hormone directed sucrose transport during fruit set induced by gibberellins in Pisum sativum. Physiologia Plantarum, 1987, 69, 356-360.	2.6	26
87	1,3-Î ² -Glucan hydrolase from Citrus. Phytochemistry, 1983, 22, 2699-2701.	1.4	5