Michael S Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5150948/publications.pdf Version: 2024-02-01

MICHAELS HU

#	Article	IF	CITATIONS
1	Wounds Inhibit Tumor Growth In Vivo. Annals of Surgery, 2021, 273, 173-180.	2.1	6
2	Disrupting biological sensors of force promotes tissue regeneration in large organisms. Nature Communications, 2021, 12, 5256.	5.8	43
3	Epidermal-Derived Hedgehog Signaling Drives Mesenchymal Proliferation during Digit Tip Regeneration. Journal of Clinical Medicine, 2021, 10, 4261.	1.0	1
4	Integrated spatial multiomics reveals fibroblast fate during tissue repair. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	76
5	Prrx1 Fibroblasts Represent a Pro-fibrotic Lineage in the Mouse Ventral Dermis. Cell Reports, 2020, 33, 108356.	2.9	44
6	Elucidating the fundamental fibrotic processes driving abdominal adhesion formation. Nature Communications, 2020, 11, 4061.	5.8	52
7	Optimization of transdermal deferoxamine leads to enhanced efficacy in healing skin wounds. Journal of Controlled Release, 2019, 308, 232-239.	4.8	31
8	Wound healing and fibrosis: current stem cell therapies. Transfusion, 2019, 59, 884-892.	0.8	24
9	Small molecule inhibition of dipeptidyl peptidase-4 enhances bone marrow progenitor cell function and angiogenesis in diabetic wounds. Translational Research, 2019, 205, 51-63.	2.2	20
10	The Importance of Umbilical Blood Supply and Umbilical Delay in Secondary Abdominoplasty: A Case Report. Aesthetic Surgery Journal, 2018, 38, NP81-NP87.	0.9	4
11	Embryonic skin development and repair. Organogenesis, 2018, 14, 46-63.	0.4	49
12	Pathway Analysis of Gene Expression of E14 Versus E18 Fetal Fibroblasts. Advances in Wound Care, 2018, 7, 1-10.	2.6	4
13	An Improved Humanized Mouse Model for Excisional Wound Healing Using Double Transgenic Mice. Advances in Wound Care, 2018, 7, 11-17.	2.6	14
14	A Fibroblast Is Not a Fibroblast IsÂNotÂa Fibroblast. Journal of Investigative Dermatology, 2018, 138, 729-730.	0.3	16
15	Pathway Analysis of Gene Expression in Murine Fetal and Adult Wounds <i>This abstract has been presented at the 8th Annual Academic Surgical Congress on February 5â€"7, 2013 in New Orleans, Louisiana and the 26th Annual Meeting of the Wound Healing Society on April 23â€"27, 2014 in Orlando, Florida.</i>	2.6	3
16	Cutaneous Scarring: Basic Science, Current Treatments, and Future Directions. Advances in Wound Care, 2018, 7, 29-45.	2.6	188
17	Mechanical Forces in Cutaneous Wound Healing: Emerging Therapies to Minimize Scar Formation. Advances in Wound Care, 2018, 7, 47-56.	2.6	150
18	Noncoding RNAs in Wound Healing: A New and Vast Frontier. Advances in Wound Care, 2018, 7, 19-27.	2.6	38

MICHAEL S HU

#	Article	IF	CITATIONS
19	Discussion. Plastic and Reconstructive Surgery, 2018, 142, 1365-1366.	0.7	3
20	Wound Healing Research at the Hagey Laboratory for Pediatric Regenerative Medicine at Stanford University School of Medicine. Advances in Wound Care, 2018, 7, 257-261.	2.6	1
21	Mesenchymal Stromal Cells and Cutaneous Wound Healing: A Comprehensive Review of the Background, Role, and Therapeutic Potential. Stem Cells International, 2018, 2018, 1-13.	1.2	153
22	Ultrasound-assisted liposuction provides a source for functional adipose-derived stromal cells. Cytotherapy, 2017, 19, 1491-1500.	0.3	33
23	Rapid Isolation of BMPR-IB+ Adipose-Derived Stromal Cells for Use in a Calvarial Defect Healing Model. Journal of Visualized Experiments, 2017, , .	0.2	1
24	A MUSE for Skin Regeneration. Journal of Investigative Dermatology, 2017, 137, 2471-2472.	0.3	8
25	Mesenchymal Stromal Cells as Cell-Based Therapeutics for Wound Healing. Stem Cells International, 2016, 2016, 1-6.	1.2	28
26	Discussion. Plastic and Reconstructive Surgery, 2016, 137, 508-509.	0.7	0
27	Cell-Assisted Lipotransfer Improves Volume Retention in Irradiated Recipient Sites and Rescues Radiation-Induced Skin Changes. Stem Cells, 2016, 34, 668-673.	1.4	71
28	Expansion and Hepatic Differentiation of Adult Bloodâ€Derived CD34 + Progenitor Cells and Promotion of Liver Regeneration After Acute Injury. Stem Cells Translational Medicine, 2016, 5, 723-732.	1.6	11
29	Creation of Abdominal Adhesions in Mice. Journal of Visualized Experiments, 2016, , .	0.2	4
30	Murine Dermal Fibroblast Isolation by FACS. Journal of Visualized Experiments, 2016, , .	0.2	16
31	Stem Cells in Bone Regeneration. Stem Cell Reviews and Reports, 2016, 12, 524-529.	5.6	110
32	Scarless wound healing: finding the right cells and signals. Cell and Tissue Research, 2016, 365, 483-493.	1.5	155
33	Suction assisted liposuction does not impair the regenerative potential of adipose derived stem cells. Journal of Translational Medicine, 2016, 14, 126.	1.8	32
34	Stem and progenitor cells: advancing bone tissue engineering. Drug Delivery and Translational Research, 2016, 6, 159-173.	3.0	33
35	Surveillance of Stem Cell Fate and Function: A System for Assessing Cell Survival and Collagen Expression <i>In Situ</i> . Tissue Engineering - Part A, 2016, 22, 31-40.	1.6	10
36	Short Hairpin RNA Silencing of PHD-2 Improves Neovascularization and Functional Outcomes in Diabetic Wounds and Ischemic Limbs. PLoS ONE, 2016, 11, e0150927.	1.1	16

MICHAEL S HU

#	Article	IF	CITATIONS
37	A Mouse Fetal Skin Model of Scarless Wound Repair. Journal of Visualized Experiments, 2015, , 52297.	0.2	18
38	Isolation and Enrichment of Human Adipose-derived Stromal Cells for Enhanced Osteogenesis. Journal of Visualized Experiments, 2015, , 52181.	0.2	7
39	<i>En1</i> fibroblasts and melanoma. Melanoma Management, 2015, 2, 191-192.	0.1	1
40	Stem Cell-Based Therapeutics to Improve Wound Healing. Plastic Surgery International, 2015, 2015, 1-7.	0.7	30
41	High-Throughput Screening of Surface Marker Expression on Undifferentiated and Differentiated Human Adipose-Derived Stromal Cells. Tissue Engineering - Part A, 2015, 21, 2281-2291.	1.6	38
42	Peripheral Blood-Derived Mesenchymal Stem Cells: Candidate Cells Responsible for Healing Critical-Sized Calvarial Bone Defects. Stem Cells Translational Medicine, 2015, 4, 359-368.	1.6	63
43	Identification and isolation of a dermal lineage with intrinsic fibrogenic potential. Science, 2015, 348, aaa2151.	6.0	520
44	Nanotechnology in bone tissue engineering. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 1253-1263.	1.7	212
45	Live Fibroblast Harvest Reveals Surface Marker Shift <i>In Vitro</i> . Tissue Engineering - Part C: Methods, 2015, 21, 314-321.	1.1	26
46	Osteoclast Derivation from Mouse Bone Marrow. Journal of Visualized Experiments, 2014, , e52056.	0.2	24
47	Understanding regulatory pathways of neovascularization in diabetes. Expert Review of Endocrinology and Metabolism, 2014, 9, 487-501.	1.2	1
48	Tissue Engineering and Regenerative Repair in Wound Healing. Annals of Biomedical Engineering, 2014, 42, 1494-1507.	1.3	140
49	The Role of Hypoxia-Inducible Factor in Wound Healing. Advances in Wound Care, 2014, 3, 390-399.	2.6	257
50	Gene expression in fetal murine keratinocytes and fibroblasts. Journal of Surgical Research, 2014, 190, 344-357.	0.8	21
51	Mechanotransduction and fibrosis. Journal of Biomechanics, 2014, 47, 1997-2005.	0.9	157
52	Aging disrupts cell subpopulation dynamics and diminishes the function of mesenchymal stem cells. Scientific Reports, 2014, 4, 7144.	1.6	140
53	Epidermal or Dermal Specific Knockout of PHD-2 Enhances Wound Healing and Minimizes Ischemic Injury. PLoS ONE, 2014, 9, e93373.	1.1	24