Ricardo Soto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5150849/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Putting Continuous Metaheuristics to Work in Binary Search Spaces. Complexity, 2017, 2017, 1-19.	1.6	135
2	Parameter tuning of a choice-function based hyperheuristic using Particle Swarm Optimization. Expert Systems With Applications, 2013, 40, 1690-1695.	7.6	81
3	A k-means binarization framework applied to multidimensional knapsack problem. Applied Intelligence, 2018, 48, 357-380.	5.3	64
4	Application of the Artificial Bee Colony Algorithm for Solving the Set Covering Problem. Scientific World Journal, The, 2014, 2014, 1-8.	2.1	56
5	A clustering algorithm applied to the binarization of Swarm intelligence continuous metaheuristics. Swarm and Evolutionary Computation, 2019, 44, 646-664.	8.1	56
6	Analyzing the effects of binarization techniques when solving the set covering problem through swarm optimization. Expert Systems With Applications, 2017, 70, 67-82.	7.6	55
7	Cell formation in group technology using constraint programming and Boolean satisfiability. Expert Systems With Applications, 2012, 39, 11423-11427.	7.6	40
8	A Max–Min Ant System algorithm to solve the Software Project Scheduling Problem. Expert Systems With Applications, 2014, 41, 6634-6645.	7.6	40
9	A Multi Dynamic Binary Black Hole Algorithm Applied to Set Covering Problem. Advances in Intelligent Systems and Computing, 2017, , 42-51.	0.6	36
10	A Binary Cat Swarm Optimization Algorithm for the Non-Unicost Set Covering Problem. Mathematical Problems in Engineering, 2015, 2015, 1-8.	1.1	35
11	A hybrid AC3-tabu search algorithm for solving Sudoku puzzles. Expert Systems With Applications, 2013, 40, 5817-5821.	7.6	32
12	Using Black Hole Algorithm to Improve EEG-Based Emotion Recognition. Computational Intelligence and Neuroscience, 2018, 2018, 1-21.	1.7	32
13	A Db-Scan Binarization Algorithm Applied to Matrix Covering Problems. Computational Intelligence and Neuroscience, 2019, 2019, 1-16.	1.7	32
14	An Optimized Brain-Based Algorithm for Classifying Parkinson's Disease. Applied Sciences (Switzerland), 2020, 10, 1827.	2.5	32
15	A Meta-Optimization Approach for Covering Problems in Facility Location. Communications in Computer and Information Science, 2017, , 565-578.	0.5	30
16	A Binary Firefly Algorithm for the Set Covering Problem. Advances in Intelligent Systems and Computing, 2014, , 65-73.	0.6	30
17	A reactive and hybrid constraint solver. Journal of Experimental and Theoretical Artificial Intelligence, 2013, 25, 1-22.	2.8	29
18	Solving the non-unicost set covering problem by using cuckoo search and black hole optimization. Natural Computing, 2017, 16, 213-229.	3.0	28

#	Article	IF	CITATIONS
19	Using Autonomous Search for Generating Good Enumeration Strategy Blends in Constraint Programming. Lecture Notes in Computer Science, 2012, , 607-617.	1.3	27
20	Cultural Algorithms for the Set Covering Problem. Lecture Notes in Computer Science, 2013, , 27-34.	1.3	26
21	Automating Configuration of Convolutional Neural Network Hyperparameters Using Genetic Algorithm. IEEE Access, 2020, 8, 156139-156152.	4.2	22
22	Constructive Metaheuristics for the Set Covering Problem. Lecture Notes in Computer Science, 2018, , 88-99.	1.3	21
23	A Percentile Transition Ranking Algorithm Applied to Binarization of Continuous Swarm Intelligence Metaheuristics. Advances in Intelligent Systems and Computing, 2018, , 3-13.	0.6	21
24	A Hyperheuristic Approach for Dynamic Enumeration Strategy Selection in Constraint Satisfaction. Lecture Notes in Computer Science, 2011, , 295-304.	1.3	21
25	Automatic Classifying of Patients With Non-Traumatic Fractures Based on Ultrasonic Guided Wave Spectrum Image Using a Dynamic Support Vector Machine. IEEE Access, 2020, 8, 194752-194764.	4.2	20
26	A Binary Cuckoo Search Algorithm for Solving the Set Covering Problem. Lecture Notes in Computer Science, 2015, , 88-97.	1.3	19
27	Human Behaviour Based Optimization Supported With Self-Organizing Maps for Solving the S-Box Design Problem. IEEE Access, 2021, 9, 84605-84618.	4.2	19
28	A Hybrid Approach Using an Artificial Bee Algorithm with Mixed Integer Programming Applied to a Large-Scale Capacitated Facility Location Problem. Mathematical Problems in Engineering, 2012, 2012, 1-14.	1.1	18
29	Binary Firefly algorithm for the set covering problem. , 2014, , .		17
30	Online control of enumeration strategies via bat algorithm and black hole optimization. Natural Computing, 2017, 16, 241-257.	3.0	17
31	A New Metaheuristic Inspired by the Vapour-Liquid Equilibrium for Continuous Optimization. Applied Sciences (Switzerland), 2018, 8, 2080.	2.5	17
32	Adaptive Black Hole Algorithm for Solving the Set Covering Problem. Mathematical Problems in Engineering, 2018, 2018, 1-23.	1.1	17
33	Solving a Novel Inventory Location Model with Stochastic Constraints and Ammi:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"> < mml:mo stretchy="false"> (< mml:mi>R < mml:mo>, < mml:mi>ss, <td>nml:1010><r< td=""><td>nmltøii>S</td></r<></td>	n ml:1010 > <r< td=""><td>nmltøii>S</td></r<>	nm ltø ii>S
34	Engineering, 2013, 2013, 1-12. Using autonomous search for solving constraint satisfaction problems via new modern approaches. Swarm and Evolutionary Computation, 2016, 30, 64-77.	8.1	16
35	The patient bed assignment problem solved by autonomous bat algorithm. Applied Soft Computing Journal, 2019, 81, 105484.	7.2	16
36	Q-Learnheuristics: Towards Data-Driven Balanced Metaheuristics. Mathematics, 2021, 9, 1839.	2.2	16

#	Article	IF	CITATIONS
37	A 2-level Metaheuristic for the Set Covering Problem. International Journal of Computers, Communications and Control, 2014, 7, 377.	1.8	16
38	A Migrating Birds Optimization Algorithm for Machine-Part Cell Formation Problems. Lecture Notes in Computer Science, 2015, , 270-281.	1.3	15
39	Solving the Manufacturing Cell Design Problem through Binary Cat Swarm Optimization with Dynamic Mixture Ratios. Computational Intelligence and Neuroscience, 2019, 2019, 1-16.	1.7	15
40	Toward a Robust Multi-Objective Metaheuristic for Solving the Relay Node Placement Problem in Wireless Sensor Networks. Sensors, 2019, 19, 677.	3.8	15
41	Extensible CP-Based Autonomous Search. Communications in Computer and Information Science, 2011, , 561-565.	0.5	15
42	Agile Software Development: It Is about Knowledge Management and Creativity. Lecture Notes in Computer Science, 2013, , 98-113.	1.3	14
43	A Prefiltered Cuckoo Search Algorithm with Geometric Operators for Solving Sudoku Problems. Scientific World Journal, The, 2014, 2014, 1-12.	2.1	14
44	Solving the Set Covering Problem with a Shuffled Frog Leaping Algorithm. Lecture Notes in Computer Science, 2015, , 41-50.	1.3	14
45	Boosting autonomous search for CSPs via skylines. Information Sciences, 2015, 308, 38-48.	6.9	14
46	An Artificial Bee Colony Algorithm for the Set Covering Problem. Advances in Intelligent Systems and Computing, 2014, , 53-63.	0.6	14
47	Solving Manufacturing Cell Design Problems Using Constraint Programming. Lecture Notes in Computer Science, 2012, , 400-406.	1.3	14
48	Agile software engineering as creative work. , 2012, , .		13
49	Andean Condor Algorithm for cell formation problems. Natural Computing, 2019, 18, 351-381.	3.0	13
50	Pre-processing, Repairing and Transfer Functions Can Help Binary Electromagnetism-Like Algorithms. Advances in Intelligent Systems and Computing, 2015, , 89-97.	0.6	13
51	Model-driven constraint programming. , 2008, , .		12
52	Binarization Methods for Shuffled Frog Leaping Algorithms That Solve Set Covering Problems. Advances in Intelligent Systems and Computing, 2015, , 317-326.	0.6	11
53	Clustering-Based Binarization Methods Applied to the Crow Search Algorithm for 0/1 Combinatorial Problems. Mathematics, 2020, 8, 1070.	2.2	11
54	A Novel Learning-Based Binarization Scheme Selector for Swarm Algorithms Solving Combinatorial Problems. Mathematics, 2021, 9, 2887.	2.2	11

#	Article	IF	CITATIONS
55	A Hybrid Soft Computing Approach for Subset Problems. Mathematical Problems in Engineering, 2013, 2013, 1-12.	1.1	10
56	Solving Manufacturing Cell Design Problems Using an Artificial Fish Swarm Algorithm. Lecture Notes in Computer Science, 2015, , 282-290.	1.3	10
57	Efficient Parallel Sorting for Migrating Birds Optimization When Solving Machine-Part Cell Formation Problems. Scientific Programming, 2016, 2016, 1-39.	0.7	10
58	Solving the Manufacturing Cell Design Problem Using Human Behavior-Based Algorithm Supported by Autonomous Search. IEEE Access, 2019, 7, 132228-132239.	4.2	10
59	A new EEG software that supports emotion recognition by using an autonomous approach. Neural Computing and Applications, 2020, 32, 11111-11127.	5.6	10
60	A binary monkey search algorithm variation for solving the set covering problem. Natural Computing, 2020, 19, 825-841.	3.0	10
61	A Q-Learning Hyperheuristic Binarization Framework to Balance Exploration and Exploitation. Communications in Computer and Information Science, 2020, , 14-28.	0.5	10
62	Agile Software Teams Can Use Conflict to Create a Better Products. Communications in Computer and Information Science, 2014, , 24-29.	0.5	9
63	Modified Binary FireFly Algorithms with Different Transfer Functions for Solving Set Covering Problems. Advances in Intelligent Systems and Computing, 2015, , 307-315.	0.6	9
64	A Binary Fruit Fly Optimization Algorithm to Solve the Set Covering Problem. Lecture Notes in Computer Science, 2015, , 411-420.	1.3	9
65	Binary cat swarm optimization for the set covering problem. , 2015, , .		9
66	Solving the manufacturing cell design problem using the modified binary firefly algorithm and the egyptian vulture optimisation algorithm. IET Software, 2017, 11, 105-115.	2.1	9
67	Embedding Q-Learning in the selection of metaheuristic operators: The enhanced binary grey wolf optimizer case. , 2021, , .		9
68	Solving Manufacturing Cell Design Problems Using a Shuffled Frog Leaping Algorithm. Advances in Intelligent Systems and Computing, 2016, , 253-261.	0.6	9
69	Parameter Tuning of Metaheuristics Using Metaheuristics. Advanced Science Letters, 2013, 19, 3556-3559.	0.2	9
70	Top-kBased Adaptive Enumeration in Constraint Programming. Mathematical Problems in Engineering, 2015, 2015, 1-12.	1.1	8
71	Solving the Manufacturing Cell Design Problem via Invasive Weed Optimization. Advances in Intelligent Systems and Computing, 2016, , 115-126.	0.6	8
72	A Self-Adaptive Cuckoo Search Algorithm Using a Machine Learning Technique. Mathematics, 2021, 9, 1840.	2.2	8

#	Article	IF	CITATIONS
73	A Binary Machine Learning Cuckoo Search Algorithm Improved by a Local Search Operator for the Set-Union Knapsack Problem. Mathematics, 2021, 9, 2611.	2.2	8
74	A Teaching-Learning-Based Optimization Algorithm for Solving Set Covering Problems. Lecture Notes in Computer Science, 2015, , 421-430.	1.3	7
75	Bridges Reinforcement Through Conversion of Tied-Arch Using Crow Search Algorithm. Lecture Notes in Computer Science, 2019, , 525-535.	1.3	7
76	Solving the Set Covering Problem with the Soccer League Competition Algorithm. Lecture Notes in Computer Science, 2016, , 884-891.	1.3	7
77	The Design of COMMA: An Extensible Framework for Mapping Constrained Objects to Native Solver Models. , 2007, , .		6
78	Solving the Set Covering Problem with Binary Cat Swarm Optimization. Lecture Notes in Computer Science, 2015, , 41-48.	1.3	6
79	A Comparison of Three Recent Nature-Inspired Metaheuristics for the Set Covering Problem. Lecture Notes in Computer Science, 2015, , 431-443.	1.3	6
80	Agile software teams must be creatives. , 2012, , .		5
81	Solving the Balanced Academic Curriculum Problem Using the ACO Metaheuristic. Mathematical Problems in Engineering, 2013, 2013, 1-8.	1.1	5
82	Using the Firefly Optimization Method to Solve the Weighted Set Covering Problem. Communications in Computer and Information Science, 2014, , 509-514.	0.5	5
83	Automatic High-Frequency Trading: An Application to Emerging Chilean Stock Market. Scientific Programming, 2018, 2018, 1-12.	0.7	5
84	Exploring Further Advantages in an Alternative Formulation for the Set Covering Problem. Mathematical Problems in Engineering, 2020, 2020, 1-24.	1,1	5
85	A Reactive Population Approach on the Dolphin Echolocation Algorithm for Solving Cell Manufacturing Systems. Mathematics, 2020, 8, 1389.	2.2	5
86	Solving the 0/1 Knapsack Problem Using a Galactic Swarm Optimization with Data-Driven Binarization Approaches. Lecture Notes in Computer Science, 2020, , 511-526.	1.3	5
87	The Use of Metaheuristics to Software Project Scheduling Problem. Lecture Notes in Computer Science, 2014, , 215-226.	1.3	5
88	High-Level Modeling of Component-Based CSPs. Lecture Notes in Computer Science, 2010, , 233-242.	1.3	5
89	Controlling Search in Constrained-Object Models. Lecture Notes in Computer Science, 2010, , 582-591.	1.3	5
90	The Influence of Emotions on Productivity in Software Engineering. Communications in Computer and Information Science, 2014, , 307-310.	0.5	5

#	Article	IF	CITATIONS
91	Finding the Maximal Pose Error in Robotic Mechanical Systems Using Constraint Programming. Lecture Notes in Computer Science, 2010, , 82-91.	1.3	4
92	Ants Can Schedule Software Projects. Communications in Computer and Information Science, 2013, , 635-639.	0.5	4
93	Comparing Evolutionary Strategies on a Biobjective Cultural Algorithm. Scientific World Journal, The, 2014, 2014, 1-10.	2.1	4
94	Set constraint model and automated encoding into SAT: application to the social golfer problem. Annals of Operations Research, 2015, 235, 423-452.	4.1	4
95	An Approach to Solve the Set Covering Problem with the Soccer League Competition Algorithm. Lecture Notes in Computer Science, 2016, , 373-385.	1.3	4
96	A Firefly Algorithm to Solve the Manufacturing Cell Design Problem. Advances in Intelligent Systems and Computing, 2016, , 103-114.	0.6	4
97	A Nature Inspired Intelligent Water Drop Algorithm and Its Application for Solving The Set Covering Problem. Advances in Intelligent Systems and Computing, 2016, , 437-447.	0.6	4
98	Firefly Algorithm to Solve a Project Scheduling Problem. Advances in Intelligent Systems and Computing, 2016, , 449-458.	0.6	4
99	Intelligent water drop algorithm (IWD)to solve software project scheduling problem. , 2016, , .		4
100	A self-adaptive biogeography-based algorithm to solve the set covering problem. RAIRO - Operations Research, 2019, 53, 1033-1059.	1.8	4
101	An Adaptive Intelligent Water Drops Algorithm for Set Covering Problem. , 2019, , .		4
102	A new metaheuristic based on vapor-liquid equilibrium for solving a new patient bed assignment problem. Expert Systems With Applications, 2020, 158, 113506.	7.6	4
103	Solving complex problems using model transformations: from set constraint modeling to SAT instance solving. Expert Systems With Applications, 2020, 149, 113243.	7.6	4
104	A Comparison of Learnheuristics Using Different Reward Functions to Solve the Set Covering Problem. Communications in Computer and Information Science, 2021, , 74-85.	0.5	4
105	Novel and Classic Metaheuristics for Tunning a Recommender System for Predicting Student Performance in Online Campus. Lecture Notes in Computer Science, 2018, , 125-133.	1.3	4
106	Ambidextrous Socio-Cultural Algorithms. Lecture Notes in Computer Science, 2020, , 923-938.	1.3	4
107	A 2-level Approach for the Set Covering Problem: Parameter Tuning of Artificial Bee Colony Algorithm by Using Genetic Algorithm. Lecture Notes in Computer Science, 2014, , 189-196.	1.3	4
108	A Hyperheuristic Approach for Guiding Enumeration in Constraint Solving. Advances in Intelligent Systems and Computing, 2013, , 171-188.	0.6	4

#	Article	IF	CITATIONS
109	A Hybrid <tt>alldifferent</tt> -Tabu Search Algorithm for Solving Sudoku Puzzles. Computational Intelligence and Neuroscience, 2015, 2015, 1-10.	1.7	3
110	Autonomous Tuning for Constraint Programming via Artificial Bee Colony Optimization. Lecture Notes in Computer Science, 2015, , 159-171.	1.3	3
111	A Timetabling Applied Case Solved with Ant Colony Optimization. Advances in Intelligent Systems and Computing, 2015, , 267-276.	0.6	3
112	Solving the Set Covering Problem with a Binary Black Hole Inspired Algorithm. Lecture Notes in Computer Science, 2016, , 207-219.	1.3	3
113	Solving Set Covering Problem withÂFireworksÂExplosion. Lecture Notes in Computer Science, 2016, , 273-283.	1.3	3
114	Cat Swarm Optimization with Different Binarization Methods for Solving Set Covering Problems. Advances in Intelligent Systems and Computing, 2016, , 511-524.	0.6	3
115	Biogeography-Based Optimization Algorithm for Solving the Set Covering Problem. Advances in Intelligent Systems and Computing, 2016, , 273-283.	0.6	3
116	A firefly algorithm to solve the manufacturing cell design problem. , 2016, , .		3
117	A Binary Grasshopper Optimisation Algorithm Applied to the Set Covering Problem. Advances in Intelligent Systems and Computing, 2019, , 1-12.	0.6	3
118	Galactic Swarm Optimization Applied to Reinforcement of Bridges by Conversion in Cable-Stayed Arch. Lecture Notes in Computer Science, 2019, , 108-119.	1.3	3
119	Analysis and Prediction of Engineering Student Behavior and Their Relation to Academic Performance Using Data Analytics Techniques. Applied Sciences (Switzerland), 2020, 10, 7114.	2.5	3
120	Advanced Techniques in the Analysis and Prediction of Students' Behaviour in Technology-Enhanced Learning Contexts. Applied Sciences (Switzerland), 2020, 10, 6178.	2.5	3
121	A Knowledge-Based Hybrid Approach on Particle Swarm Optimization Using Hidden Markov Models. Mathematics, 2021, 9, 1417.	2.2	3
122	A Learning-Based Hybrid Framework for Dynamic Balancing of Exploration-Exploitation: Combining Regression Analysis and Metaheuristics. Mathematics, 2021, 9, 1976.	2.2	3
123	Modeling Manufacturing Cell Design Problems: CP vs. MH. Communications in Computer and Information Science, 2014, , 498-502.	0.5	3
124	Online Control of Enumeration Strategies via Bat-Inspired Optimization. Lecture Notes in Computer Science, 2015, , 1-10.	1.3	3
125	A Cultural Algorithm Applied in a Bi-Objective Uncapacitated Facility Location Problem. Lecture Notes in Computer Science, 2011, , 477-491.	1.3	3
126	Constraint-Based Nurse Rostering for the ValparaÃso Clinic Center in Chile. Communications in Computer and Information Science, 2011, , 448-452.	0.5	3

#	Article	IF	CITATIONS
127	Modeling the Portfolio Selection Problem with Constraint Programming. Communications in Computer and Information Science, 2013, , 645-649.	0.5	2
128	Modeling NRPs with Soft and Reified Constraints. AASRI Procedia, 2013, 4, 202-205.	0.6	2
129	Solving Biobjective Set Covering Problem Using Binary Cat Swarm Optimization Algorithm. Lecture Notes in Computer Science, 2016, , 220-231.	1.3	2
130	Resolving the Manufacturing Cell Design Problem Using the Flower Pollination Algorithm. Lecture Notes in Computer Science, 2016, , 184-195.	1.3	2
131	A Binary Invasive Weed Optimization Algorithm for the Set Covering Problem. Advances in Intelligent Systems and Computing, 2016, , 459-468.	0.6	2
132	Solving Manufacturing Cell Design Problems Using the Black Hole Algorithm. Lecture Notes in Computer Science, 2017, , 391-398.	1.3	2
133	Recent Advances on Swarm Intelligence for Solving Complex Engineering Problems. Mathematical Problems in Engineering, 2018, 2018, 1-1.	1.1	2
134	Using a Social Media Inspired Optimization Algorithm to Solve the Set Covering Problem. Lecture Notes in Computer Science, 2019, , 43-52.	1.3	2
135	Optimization of Bridges Reinforcement by Conversion to Tied Arch Using an Animal Migration Algorithm. Lecture Notes in Computer Science, 2019, , 827-834.	1.3	2
136	Solving the Manufacturing Cell Design Problem through an Autonomous Water Cycle Algorithm. Applied Sciences (Switzerland), 2019, 9, 4736.	2.5	2
137	Limited Stop Services Design Considering Variable Dwell Time and Operating Capacity Constraints. IEEE Access, 2021, 9, 30359-30373.	4.2	2
138	Solving Manufacturing Cell Design Problems by Using a Bat Algorithm Approach. Lecture Notes in Computer Science, 2016, , 184-191.	1.3	2
139	Autonomous Search in Constraint Satisfaction via Black Hole: A Performance Evaluation Using Different Choice Functions. Lecture Notes in Computer Science, 2016, , 56-65.	1.3	2
140	Stochastic Fractal Search Algorithm Improved with Opposition-Based Learning for Solving the Substitution Box Design Problem. Mathematics, 2022, 10, 2172.	2.2	2
141	On the Pursuit of Reliable Solutions for a Robotic Optimization Problem. AASRI Procedia, 2013, 4, 26-30.	0.6	1
142	A Bicriteria Approach Identifying Nondominated Portfolios. Journal of Applied Mathematics, 2014, 2014, 1-8.	0.9	1
143	Solving sudokus via metaheuristics and AC3. , 2014, , .		1
144	The Impact of a New Formulation When Solving the Set Covering Problem Using the ACO Metaheuristic. Advances in Intelligent Systems and Computing, 2015, , 209-218.	0.6	1

#	Article	IF	CITATIONS
145	A Filtering Technique for Helping to Solve Sudoku Problems. Communications in Computer and Information Science, 2015, , 598-603.	0.5	1
146	Using binary fruit fly algorithm for solving the set covering problem. , 2015, , .		1
147	Structural modernization on Chilean bridges Proposal for optimization on strengthening design via Genetic algorithm. , 2017, , .		1
148	Optimal Keyboard Design by Using Particle Swarm Optimization. Communications in Computer and Information Science, 2018, , 281-284.	0.5	1
149	Data Science and Al-Based Optimization in Scientific Programming. Scientific Programming, 2019, 2019, 1-3.	0.7	1
150	Self-configuring Intelligent Water Drops Algorithm for Software Project Scheduling Problem. Advances in Intelligent Systems and Computing, 2019, , 274-283.	0.6	1
151	Advances in Recent Nature-Inspired Algorithms for Neural Engineering. Computational Intelligence and Neuroscience, 2020, 2020, 1-2.	1.7	1
152	An Autonomous Galactic Swarm Optimization Algorithm Supported by Hidden Markov Model. Advances in Intelligent Systems and Computing, 2021, , 354-363.	0.6	1
153	Solving the Manufacturing Cell Design Problem Using the Artificial Bee Colony Algorithm. Lecture Notes in Computer Science, 2017, , 473-484.	1.3	1
154	Adaptive and Multilevel Approach for Constraint Solving. Communications in Computer and Information Science, 2013, , 650-654.	0.5	1
155	Interleaving Constraint Propagation: An Efficient Cooperative Search with Branch and Bound. Lecture Notes in Computer Science, 2013, , 52-61.	1.3	1
156	A New Approach to Solve the Software Project Scheduling Problem Based on Max–Min Ant System. Advances in Intelligent Systems and Computing, 2014, , 41-51.	0.6	1
157	Self-adaptive Systems: Facilitating the Use of Combinatorial Problem Solvers. Communications in Computer and Information Science, 2014, , 503-508.	0.5	1
158	Autonomous Search: Towards the Easy Tuning of Constraint Programming Solvers. Communications in Computer and Information Science, 2014, , 165-168.	0.5	1
159	The Impact of Using Different Choice Functions When Solving CSPs with Autonomous Search. Lecture Notes in Computer Science, 2016, , 904-916.	1.3	1
160	A New Thermodynamic Equilibrium-Based Metaheuristic. Advances in Intelligent Systems and Computing, 2018, , 336-346.	0.6	1
161	Balancing Exploration-Exploitation in the Set Covering Problem Resolution with a Self-adaptive Intelligent Water Drops Algorithm. Advances in Science, Technology and Engineering Systems, 2020, 6, 134-145.	0.5	1
162	Applying Parallel and Distributed Models on Bio-Inspired Algorithms via a Clustering Method. Mathematics, 2022, 10, 274.	2.2	1

#	Article	IF	CITATIONS
163	Robust Solutions for a Robotic Manipulator Optimization Problem. Lecture Notes in Computer Science, 2013, , 451-460.	1.3	Ο
164	Max-Min Ant System to solve the software project scheduling problem. , 2014, , .		0
165	Enumeration strategies to solve constraint satisfaction problems: Performance evaluation. , 2015, , .		О
166	A choice functions portfolio for solving constraint satisfaction problems: a performance evaluation. , 2015, , .		0
167	A Marriage Theorem Based-Algorithm for Solving Sudoku. , 2015, , .		0
168	Automated, Adaptive, and Optimized Search for CSPs via Cuckoo Search. Lecture Notes in Computer Science, 2015, , 436-447.	1.3	0
169	The Complexity of Designing and Implementing Metaheuristics. Communications in Computer and Information Science, 2015, , 593-597.	0.5	Ο
170	Hybrid algorithms for solving Sudokus. , 2015, , .		0
171	Scientific Programming in Computational Intelligence. Scientific Programming, 2016, 2016, 1-2.	0.7	Ο
172	Set Covering Problem Resolution byÂBiogeography-Based Optimization Algorithm. Lecture Notes in Computer Science, 2016, , 153-165.	1.3	0
173	An Alternative Solution to the Software Project Scheduling Problem. Advances in Intelligent Systems and Computing, 2016, , 501-510.	0.6	Ο
174	A Weed Colonization Inspired Algorithm for the Weighted Set Cover Problem. Lecture Notes in Computer Science, 2016, , 129-138.	1.3	0
175	A Software Project Management Problem Solved by Firefly Algorithm. Lecture Notes in Computer Science, 2016, , 40-49.	1.3	Ο
176	Automatic Triggering of Constraint Propagation. Lecture Notes in Computer Science, 2013, , 452-461.	1.3	0
177	A GUI for Modeling Regular Constraints. Communications in Computer and Information Science, 2013, , 660-663.	0.5	Ο
178	Easy Modeling of Open Pit Mining Problems via Constraint Programming. Communications in Computer and Information Science, 2014, , 519-522.	0.5	0
179	Experiential Solving: Towards a Unified Autonomous Search Constraint Solving Approach. Communications in Computer and Information Science, 2015, , 573-577.	0.5	0
180	Towards a Framework for Adaptive Constraint Propagation. Communications in Computer and Information Science, 2015, , 578-581.	0.5	0

#	Article	IF	CITATIONS
181	Leadership in Agile Software Development Methods. Communications in Computer and Information Science, 2015, , 154-158.	0.5	0
182	A Bi-Objetive Cat Swarm Optimization Algorithm for Set Covering Problem. Advances in Intelligent Systems and Computing, 2016, , 491-500.	0.6	0
183	An Artificial Fish Swarm Optimization Algorithm to Solve Set Covering Problem. Lecture Notes in Computer Science, 2016, , 892-903.	1.3	0
184	Finding Solutions of the Set Covering Problem with an Artificial Fish Swarm Algorithm Optimization. Lecture Notes in Computer Science, 2016, , 166-181.	1.3	0
185	Applying an Electromagnetism-Like Algorithm for Solving the Manufacturing Cell Design Problem. Advances in Computational Intelligence and Robotics Book Series, 2017, , 37-61.	0.4	0
186	Solving the Set Covering Problem Using Cat Swarm Optimization Algorithm with a Variable Mixture Rate and Population Restart. Advances in Intelligent Systems and Computing, 2018, , 156-166.	0.6	0
187	Applying an Electromagnetism-Like Algorithm for Solving the Manufacturing Cell Design Problem. , 2018, , 1212-1231.		0
188	Solving the MCDP Using a League Championship Algorithm. Lecture Notes in Computer Science, 2018, , 447-453.	1.3	0
189	Comparison Between Stochastic Gradient Descent and VLE Metaheuristic for Optimizing Matrix Factorization. Communications in Computer and Information Science, 2020, , 153-164.	0.5	0
190	Tuning Constrained Objects. Lecture Notes in Computer Science, 2008, , 408-414.	1.3	0