Lorenzo Spadaro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5150469/publications.pdf

Version: 2024-02-01

117453 123241 4,464 63 34 61 citations g-index h-index papers 65 65 65 4397 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Synthesis, characterization and activity pattern of Cu–ZnO/ZrO2 catalysts in the hydrogenation of carbon dioxide to methanol. Journal of Catalysis, 2007, 249, 185-194.	3.1	468
2	Solid-state interactions, adsorption sites and functionality of Cu-ZnO/ZrO2 catalysts in the CO2 hydrogenation to CH3OH. Applied Catalysis A: General, 2008, 350, 16-23.	2.2	367
3	H2 production for MC fuel cell by steam reforming of ethanol over MgO supported Pd, Rh, Ni and Co catalysts. Catalysis Communications, 2004, 5, 611-615.	1.6	284
4	Promoting Effect of CeO2in Combustion Synthesized Pt/CeO2Catalyst for CO Oxidation. Journal of Physical Chemistry B, 2003, 107, 6122-6130.	1.2	273
5	Steam reforming of bio-ethanol on alkali-doped Ni/MgO catalysts: hydrogen production for MC fuel cell. Applied Catalysis A: General, 2004, 270, 1-7.	2.2	214
6	Effects of oxide carriers on surface functionality and process performance of the Cu–ZnO system in the synthesis of methanol via CO2 hydrogenation. Journal of Catalysis, 2013, 300, 141-151.	3.1	197
7	Production of hydrogen for MC fuel cell by steam reforming of ethanol over MgO supported Ni and Co catalysts. Catalysis Communications, 2003, 4, 259-268.	1.6	182
8	Catalytic etherification of glycerol by tert-butyl alcohol to produce oxygenated additives for diesel fuel. Applied Catalysis A: General, 2009, 367, 77-83.	2.2	181
9	Basic Evidence of the Molecular Dispersion of MnCeOxCatalysts Synthesized via a Novel "Redox-Precipitation―Route. Chemistry of Materials, 2007, 19, 2269-2276.	3.2	139
10	Hybrid Cu–ZnO–ZrO2/H-ZSM5 system for the direct synthesis of DME by CO2 hydrogenation. Applied Catalysis B: Environmental, 2013, 140-141, 16-24.	10.8	132
11	Basic evidences for methanol-synthesis catalyst design. Catalysis Today, 2009, 143, 80-85.	2.2	119
12	Steam reforming of ethanol on Ni/MgO catalysts: H2 production for MCFC. Journal of Power Sources, 2002, 108, 53-57.	4.0	116
13	Catalytic behaviour of a bifunctional system for the one step synthesis of DME by CO2 hydrogenation. Catalysis Today, 2014, 228, 51-57.	2.2	110
14	Metal–support interactions and reactivity of Co/CeO2 catalysts in the Fischer–Tropsch synthesis reaction. Journal of Catalysis, 2005, 234, 451-462.	3.1	109
15	Role of the ceria promoter and carrier on the functionality of Cu-based catalysts in the CO2-to-methanol hydrogenation reaction. Catalysis Today, 2011, 171, 251-256.	2.2	98
16	Probing the factors affecting structure and activity of the Au/CeO2 system in total and preferential oxidation of CO. Applied Catalysis B: Environmental, 2006, 66, 81-91.	10.8	96
17	How oxide carriers control the catalytic functionality of the Cu–ZnO system in the hydrogenation of CO2 to methanol. Catalysis Today, 2013, 210, 39-46.	2.2	89
18	Structure and reactivity in the selective oxidation of methane to formaldehyde of low-loaded FeOx/SiO2 catalysts. Journal of Catalysis, 2005, 231, 365-380.	3.1	87

#	Article	IF	CITATIONS
19	Recent advances on wet air oxidation catalysts for treatment of industrial wastewaters. Inorganica Chimica Acta, 2015, 431, 101-109.	1.2	83
20	Potassium improved stability of Ni/MgO in the steam reforming of ethanol for the production of hydrogen for MCFC. Journal of Power Sources, 2004, 132, 139-144.	4.0	72
21	TEM evidence for factors affecting the genesis of carbon species on bare and K-promoted Ni/MgO catalysts during the dry reforming of methane. Carbon, 2002, 40, 1063-1070.	5.4	71
22	Oxygenated additives production for diesel engine emission improvement. Chemical Engineering Journal, 2007, 134, 239-245.	6.6	69
23	Nanostructured MnO x catalysts in the liquid phase selective oxidation of benzyl alcohol with oxygen: Part I. Effects of Ce and Fe addition on structure and reactivity. Applied Catalysis B: Environmental, 2015, 162, 260-267.	10.8	63
24	Probing the functionality of nanostructured MnCeO x catalysts in the carbon monoxide oxidation. Applied Catalysis B: Environmental, 2017, 210, 14-22.	10.8	52
25	Improved MnCeOxSystems for the Catalytic Wet Oxidation (CWO) of Phenol in Wastewater Streams. Industrial & Description of Phenol in Wastewater Streams.	1.8	48
26	Raman scattering of MnO _{<i>x</i>} CeO _{<i>x</i>} composite catalysts: structural aspects and laserâ€heating effects. Journal of Raman Spectroscopy, 2011, 42, 1583-1588.	1.2	46
27	CO 2 reduction to alcohols in a polymer electrolyte membrane co-electrolysis cell operating at low potentials. Electrochimica Acta, 2017, 241, 28-40.	2.6	46
28	On the promotional effect of Cu on Pt for hydrazine electrooxidation in alkaline medium. Applied Catalysis B: Environmental, 2018, 236, 36-44.	10.8	46
29	A basic assessment of the reactivity of Ni catalysts in the decomposition of methane for the production of "COx-free―hydrogen for fuel cells application. Catalysis Today, 2006, 116, 298-303.	2.2	43
30	Optimization of the MnCeOx system for the catalytic wet oxidation of phenol with oxygen (CWAO). Applied Catalysis B: Environmental, 2008, 85, 40-47.	10.8	43
31	Efficiency and reactivity pattern of ceria-based noble metal and transition metal-oxide catalysts in the wet air oxidation of phenol. Applied Catalysis B: Environmental, 2012, 115-116, 336-345.	10.8	43
32	Low-temperature graphitization of amorphous carbon nanospheres. Chinese Journal of Catalysis, 2014, 35, 869-876.	6.9	43
33	Nanosize Effects, Physicochemical Properties, And Catalytic Oxidation Pattern of the Redox-Precipitated MnCeO _{<i>x</i>} System. Journal of Physical Chemistry C, 2009, 113, 2822-2829.	1.5	40
34	Physico-chemical properties and reactivity of Au/CeO2 catalysts in total and selective oxidation of CO. Catalysis Today, 2006, 116, 384-390.	2.2	36
35	Glycerol Ethers Production and Engine Performance with Diesel/Ethers Blend. Topics in Catalysis, 2013, 56, 378-383.	1.3	35
36	Kinetic energy harvesting: Toward autonomous wearable sensing for Internet of Things. , 2016, , .		29

#	Article	IF	CITATIONS
37	Synthesis of highly dispersed MnCeOx catalysts via a novel "redox-precipitation―route. Materials Research Bulletin, 2008, 43, 539-545.	2.7	25
38	A mechanistic assessment of the wet air oxidation activity of MnCeOx catalyst toward toxic and refractory organic pollutants. Applied Catalysis B: Environmental, 2014, 144, 292-299.	10.8	25
39	Probing the functionality of nanostructured MnCeOx catalysts in the carbon monoxide oxidation. Applied Catalysis B: Environmental, 2017, 218, 803-809.	10.8	25
40	Nanostructured MnO catalysts in the liquid phase selective oxidation of benzyl alcohol with oxygen. Applied Catalysis B: Environmental, 2015, 170-171, 233-240.	10.8	24
41	Activity pattern of low-loaded FeOx/SiO2 catalysts in the selective oxidation of C1 and C3 alkanes with oxygen. Catalysis Today, 2006, 117 , 75 - 79 .	2.2	19
42	A definitive assessment of the CO oxidation pattern of a nanocomposite MnCeO _x catalyst. Reaction Chemistry and Engineering, 2018, 3, 293-300.	1.9	17
43	Effective low-temperature catalytic methane oxidation over MnCeOx catalytic compositions. Catalysis Today, 2021, 379, 240-249.	2.2	15
44	Sunfuels from CO2 exhaust emissions: Insights into the role of photoreactor configuration by the study in laboratory and industrial environment. Journal of CO2 Utilization, 2018, 26, 445-453.	3.3	13
45	Valorization of crude bio-oil to sustainable energy vector for applications in cars powering and on-board reformers via catalytic hydrogenation. International Journal of Hydrogen Energy, 2015, 40, 14507-14518.	3.8	12
46	Latest Advances in the Catalytic Hydrogenation of Carbon Dioxide to Methanol/Dimethylether. Green Chemistry and Sustainable Technology, 2014, , 103-130.	0.4	11
47	Hydrogen Utilization in Green Fuel Synthesis via CO2 Conversion to Methanol over New Cu-Based Catalysts. ChemEngineering, 2017, 1, 19.	1.0	11
48	Copper-Iron-Zinc-Cerium oxide compositions as most suitable catalytic materials for the synthesis of green fuels via CO2 hydrogenation. Catalysis Today, 2021, 379, 230-239.	2.2	11
49	A New Class of MnCeOx Materials for the Catalytic Gas Exhausts Emission Control: A Study of the CO Model Compound Oxidation. Topics in Catalysis, 2019, 62, 259-265.	1.3	10
50	Effect of Hematite Doping with Aliovalent Impurities on the Electrochemical Performance of α-Fe2O3@rGO-Based Anodes in Sodium-Ion Batteries. Nanomaterials, 2020, 10, 1588.	1.9	10
51	Poster Abstract: KinetiSee - A Perpetual Wearable Camera Acquisition System with a Kinetic Harvester. , 2016, , .		7
52	Which Future Route in the Methanol Synthesis? Photocatalytic Reduction of CO 2 , the New Challenge in the Solar Energy Exploitation., 2018,, 429-472.		7
53	Physico-chemical and catalytic properties of effective nanostructured MnCeOx systems for environmental applications. Studies in Surface Science and Catalysis, 2010, , 493-496.	1.5	6
54	Tailoring manganese oxide catalysts for the total oxidation of pollutants in gas and liquid phase. Applied Catalysis A: General, 2021, 610, 117917.	2.2	6

#	Article	IF	CITATIONS
55	Effect of Germanium Incorporation on the Electrochemical Performance of Electrospun Fe2O3 Nanofibers-Based Anodes in Sodium-Ion Batteries. Applied Sciences (Switzerland), 2021, 11, 1483.	1.3	5
56	Totally-green Fuels via CO2 Hydrogenation. Bulletin of Chemical Reaction Engineering and Catalysis, 2020, 15, 390-404.	0.5	5
57	Factors Controlling the Energy of Nitrogen Monolayer Coverage on High Surface Area Catalyst Oxide Carriers. Journal of Physical Chemistry C, 2011, 115, 24728-24733.	1.5	4
58	Definitive Assessment of the Level of Risk of Exhausted Catalysts: Characterization of Ni and V Contaminates at the Limit of Detection. Topics in Catalysis, 2019, 62, 266-272.	1.3	4
59	Activity and stability of iron based catalysts in advanced fischer-tropsch technology via co2-rich syngas conversion. Studies in Surface Science and Catalysis, 2007, 167, 49-54.	1.5	3
60	Highly effective oxide catalyst for the detoxification of oil mill wastewaters by the wet air oxidation process. Desalination and Water Treatment, 0 , , 1 - 6 .	1.0	3
61	Bifunctional CuO-Ag/KB Catalyst for the Electrochemical Reduction of CO2 in an Alkaline Solid-State Electrolysis Cell. Catalysts, 2022, 12, 293.	1.6	3
62	Diesel-fuel improver production via novel heterogenized solid-acid catalysts. Chemical Engineering Journal, 2010, 161, 409-415.	6.6	2
63	Clean Syn-Fuels via Hydrogenation Processes: Acidity–Activity Relationship in O-Xylene Hydrotreating. ChemEngineering, 2020, 4, 4.	1.0	2