
Marcel Janssen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5150323/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mixotrophic cultivation of Galdieria sulphuraria for C-phycocyanin and protein production. Algal Research, 2022, 61, 102603.	2.4	25
2	Acid Tolerant and Acidophilic Microalgae: An Underexplored World of Biotechnological Opportunities. Frontiers in Microbiology, 2022, 13, 820907.	1.5	13
3	Growth parameter estimation and model simulation for three industrially relevant microalgae: <i>Picochlorum, Nannochloropsis</i> , and <i>Neochloris</i> . Biotechnology and Bioengineering, 2022, 119, 1416-1425.	1.7	7
4	Microalgae based production of single-cell protein. Current Opinion in Biotechnology, 2022, 75, 102705.	3.3	51
5	A novel V-shaped photobioreactor design for microalgae cultivation at low latitudes: Modelling biomass productivities of Chlorella sorokiniana on Bonaire. Chemical Engineering Journal, 2022, 449, 137793.	6.6	3
6	Model-Based Prediction of Perceived Light Flashing in Recirculated Inclined Wavy-Bottomed Photobioreactors. Processes, 2021, 9, 1158.	1.3	1
7	Cyanobacterial growth and cyanophycin production with urea and ammonium as nitrogen source. Journal of Applied Phycology, 2021, 33, 3565-3577.	1.5	9
8	Autotrophic and mixotrophic biomass production of the acidophilic Galdieria sulphuraria ACUF 64. Algal Research, 2021, 60, 102513.	2.4	17
9	Enhanced Phototrophic Biomass Productivity through Supply of Hydrogen Gas. Environmental Science and Technology Letters, 2020, 7, 861-865.	3.9	1
10	Oxygen Balanced Mixotrophy under Day–Night Cycles. ACS Sustainable Chemistry and Engineering, 2020, 8, 11682-11691.	3.2	10
11	Doubling of Microalgae Productivity by Oxygen Balanced Mixotrophy. ACS Sustainable Chemistry and Engineering, 2020, 8, 6065-6074.	3.2	46
12	Impact of hydraulic retention time on community assembly and function of photogranules for wastewater treatment. Water Research, 2020, 173, 115506.	5.3	79
13	Optimization of algae production on urine. Algal Research, 2019, 44, 101667.	2.4	21
14	Surfactant selection for a liquid foamâ€bed photobioreactor. Biotechnology Progress, 2018, 34, 711-720.	1.3	11
15	Potential of a liquid foam-bed photobioreactor for microalgae cultivation. Algal Research, 2018, 36, 193-208.	2.4	14
16	Improved liquid foam-bed photobioreactor design for microalgae cultivation. Algal Research, 2018, 33, 55-70.	2.4	18
17	Effect of photoacclimation on microalgae mass culture productivity. Algal Research, 2017, 22, 56-67.	2.4	23
18	A liquid foam-bed photobioreactor for microalgae production. Chemical Engineering Journal, 2017, 313, 1206-1214.	6.6	31

2

#	Article	IF	CITATIONS
19	Microalgal biofilm growth under day-night cycles. Algal Research, 2017, 21, 16-26.	2.4	15
20	Optimizing carbon dioxide utilization for microalgae biofilm cultivation. Biotechnology and Bioengineering, 2017, 114, 769-776.	1.7	25
21	Microalgal Photosynthesis and Growth in Mass Culture. Advances in Chemical Engineering, 2016, , 185-256.	0.5	20
22	Modeling the competition between antenna size mutant and wild type microalgae in outdoor mass culture. Journal of Biotechnology, 2016, 240, 1-13.	1.9	8
23	Turbidostat operation of outdoor pilot-scale photobioreactors. Algal Research, 2016, 18, 198-208.	2.4	27
24	Impact of light color on photobioreactor productivity. Algal Research, 2016, 15, 32-42.	2.4	128
25	Predicting microalgae growth. Algal Research, 2016, 14, 28-38.	2.4	69
26	Comparison of four outdoor pilot-scale photobioreactors. Biotechnology for Biofuels, 2015, 8, 215.	6.2	152
27	Antenna size reduction as a strategy to increase biomass productivity: a great potential not yet realized. Journal of Applied Phycology, 2015, 27, 1063-1077.	1.5	88
28	Opportunities to improve the areal oil productivity of microalgae. Bioresource Technology, 2015, 186, 294-302.	4.8	27
29	The role of an electron pool in algal photosynthesis during sub-second light–dark cycling. Algal Research, 2015, 12, 43-51.	2.4	26
30	Selecting microalgae with high lipid productivity and photosynthetic activity under nitrogen starvation. Journal of Applied Phycology, 2015, 27, 1425-1431.	1.5	81
31	Decelerationâ€stats save much time during phototrophic culture optimization. Biotechnology and Bioengineering, 2014, 111, 792-802.	1.7	6
32	The effect of harvesting on biomass production and nutrient removal in phototrophic biofilm reactors for effluent polishing. Journal of Applied Phycology, 2014, 26, 1439-1452.	1.5	57
33	Microalgae growth on concentrated human urine. Journal of Applied Phycology, 2014, 26, 287-297.	1.5	46
34	Nutrient Removal and Biomass Production in an Outdoor Pilot-Scale Phototrophic Biofilm Reactor for Effluent Polishing. Applied Biochemistry and Biotechnology, 2014, 172, 405-422.	1.4	50
35	Balancing the organic load and light supply in symbiotic microalgal–bacterial biofilm reactors treating synthetic municipal wastewater. Ecological Engineering, 2014, 64, 213-221.	1.6	124
36	Nutrient removal and microalgal biomass production on urine in a short light-path photobioreactor. Water Research, 2014, 55, 162-174.	5.3	103

#	Article	IF	CITATIONS
37	Design and construction of the microalgal pilot facility AlgaePARC. Algal Research, 2014, 6, 160-169.	2.4	51
38	Biofilm growth of <i>Chlorella sorokiniana</i> in a rotating biological contactor based photobioreactor. Biotechnology and Bioengineering, 2014, 111, 2436-2445.	1.7	125
39	Photosynthetic efficiency and oxygen evolution of Chlamydomonas reinhardtii under continuous and flashing light. Applied Microbiology and Biotechnology, 2013, 97, 1523-1532.	1.7	61
40	Biomass and lipid productivity of Neochloris oleoabundans under alkaline–saline conditions. Algal Research, 2013, 2, 204-211.	2.4	32
41	Cultivation of microalgae on artificial light comes at a cost. Algal Research, 2013, 2, 333-340.	2.4	193
42	Scenario Analysis of Nutrient Removal from Municipal Wastewater by Microalgal Biofilms. Water (Switzerland), 2012, 4, 460-473.	1.2	79
43	Carotenoid and fatty acid metabolism in nitrogen-starved Dunaliella salina, a unicellular green microalga. Journal of Biotechnology, 2012, 162, 21-27.	1.9	163
44	Photosynthetic efficiency of <i>Chlamydomonas reinhardtii</i> in attenuated, flashing light. Biotechnology and Bioengineering, 2012, 109, 2567-2574.	1.7	55
45	Performance of Chlorella sorokiniana under simulated extreme winter conditions. Journal of Applied Phycology, 2012, 24, 693-699.	1.5	43
46	Growth of the microalgae Neochloris oleoabundans at high partial oxygen pressures and sub-saturating light intensity. Bioresource Technology, 2012, 104, 565-570.	4.8	51
47	Growth of oil accumulating microalga Neochloris oleoabundans under alkaline–saline conditions. Bioresource Technology, 2012, 104, 593-599.	4.8	102
48	Metabolic modeling of Chlamydomonas reinhardtii: energy requirements for photoautotrophic growth and maintenance. Journal of Applied Phycology, 2012, 24, 253-266.	1.5	141
49	Nitrogen and phosphorus removal from municipal wastewater effluent using microalgal biofilms. Water Research, 2011, 45, 5925-5933.	5.3	271
50	Luminostat operation: A tool to maximize microalgae photosynthetic efficiency in photobioreactors during the daily light cycle?. Bioresource Technology, 2011, 102, 7871-7878.	4.8	49
51	Two-phase systems: Potential for in situ extraction of microalgal products. Biotechnology Advances, 2011, 29, 502-507.	6.0	46
52	Light respiration in Chlorella sorokiniana. Journal of Applied Phycology, 2011, 23, 935-947.	1.5	52
53	Phase toxicity of dodecane on the microalga Dunaliella salina. Journal of Applied Phycology, 2011, 23, 949-958.	1.5	29
54	Calorimetry and thermodynamic aspects of heterotrophic, mixotrophic, and phototrophic growth. Journal of Thermal Analysis and Calorimetry, 2011, 104, 45-52.	2.0	14

#	Article	IF	CITATIONS
55	Horizontal or vertical photobioreactors? How to improve microalgae photosynthetic efficiency. Bioresource Technology, 2011, 102, 5129-5137.	4.8	137
56	Effect of O ₂ :CO ₂ ratio on the primary metabolism of <i>Chlamydomonas reinhardtii</i> . Biotechnology and Bioengineering, 2011, 108, 2390-2402.	1.7	57
57	Photosynthetic efficiency of <i>Chlamydomonas reinhardtii</i> in flashing light. Biotechnology and Bioengineering, 2011, 108, 2905-2913.	1.7	112
58	Continuous production of carotenoids from Dunaliella salina. Enzyme and Microbial Technology, 2011, 48, 253-259.	1.6	56
59	The Selectivity of Milking of Dunaliella salina. Marine Biotechnology, 2010, 12, 14-23.	1.1	42
60	Maximum Photosynthetic Yield of Green Microalgae in Photobioreactors. Marine Biotechnology, 2010, 12, 708-718.	1.1	106
61	Carotenoid fluorescence in Dunaliella salina. Journal of Applied Phycology, 2010, 22, 645-649.	1.5	62
62	Photosynthetic efficiency of <i>Chlorella sorokiniana</i> in a turbulently mixed short lightâ€path photobioreactor. Biotechnology Progress, 2010, 26, 687-696.	1.3	125
63	Carotenoid and fatty acid metabolism in lightâ€stressed <i>Dunaliella salina</i> . Biotechnology and Bioengineering, 2010, 106, 638-648.	1.7	221
64	Productivity of <i>Chlorella sorokiniana</i> in a short lightâ€path (SLP) panel photobioreactor under high irradiance. Biotechnology and Bioengineering, 2009, 104, 352-359.	1.7	138
65	Exploration of the hydrogen producing potential of <i>Rhodobacter capsulatus</i> chemostat cultures: The application of decelerationâ€stat and gradientâ€stat methodology. Biotechnology Progress, 2009, 25, 1343-1352.	1.3	0
66	Cultivation of Dunaliella for High Value Compounds. , 2009, , 91-110.		0
67	Design Process of an Area-Efficient Photobioreactor. Marine Biotechnology, 2008, 10, 404-415.	1.1	108
68	Capturing sunlight into a photobioreactor: Ray tracing simulations of the propagation of light from capture to distribution into the reactor. Chemical Engineering Journal, 2008, 145, 316-327.	6.6	39
69	The effect of irradiance on long-term skeletal growth and net photosynthesis in Galaxea fascicularis under four light conditions. Journal of Experimental Marine Biology and Ecology, 2008, 367, 75-80.	0.7	37
70	Exploring and exploiting carotenoid accumulation in Dunaliella salina for cell-factory applications. Trends in Biotechnology, 2008, 26, 631-638.	4.9	166
71	A study of the growth for the microalgaChlorella vulgaris by photo-bio-calorimetry and other on-line and off-line techniques. Biotechnology and Bioengineering, 2007, 96, 757-767.	1.7	27
72	Biocalorimetric monitoring of photoautotrophic batch cultures. Thermochimica Acta, 2007, 458, 54-64.	1.2	12

#	Article	IF	CITATIONS
73	Controlling light-use byRhodobacter capsulatus continuous cultures in a flat-panel photobioreactor. Biotechnology and Bioengineering, 2006, 95, 613-626.	1.7	33
74	Application of bench-scale biocalorimetry to photoautotrophic cultures. Thermochimica Acta, 2005, 435, 18-27.	1.2	18
75	Second primary tumours in oropharyngeal squamous cell carcinoma. Clinical Oral Investigations, 2004, 8, 56-62.	1.4	11
76	Enclosed outdoor photobioreactors: Light regime, photosynthetic efficiency, scale-up, and future prospects. Biotechnology and Bioengineering, 2003, 81, 193-210.	1.7	370
77	Microalgae cultivation in air-lift reactors: Modeling biomass yield and growth rate as a function of mixing frequency. Biotechnology and Bioengineering, 2003, 82, 170-179.	1.7	145
78	Vitamin E (α-tocopherol) production by the marine microalgae Dunaliella tertiolecta and Tetraselmis suecica in batch cultivation. New Biotechnology, 2003, 20, 139-147.	2.7	135
79	Photobiological hydrogen production: photochemical efficiency and bioreactor design. International Journal of Hydrogen Energy, 2002, 27, 1195-1208.	3.8	429
80	A pneumatically agitated flat-panel photobioreactor with gas re-circulation: anaerobic photoheterotrophic cultivation of a purple non-sulfur bacterium. International Journal of Hydrogen Energy, 2002, 27, 1331-1338.	3.8	72
81	Biohydrogen 2002. International Journal of Hydrogen Energy, 2002, 27, 1123-1124.	3.8	10
82	Photosynthetic efficiency of Dunaliella tertiolecta under short light/dark cycles. Enzyme and Microbial Technology, 2001, 29, 298-305.	1.6	87
83	Scale-up aspects of photobioreactors: effects of mixing-induced light/dark cycles. Journal of Applied Phycology, 2000, 12, 225-237.	1.5	82
84	Efficiency of light utilization of Chlamydomonas reinhardtii under medium-duration light/dark cycles. Journal of Biotechnology, 2000, 78, 123-137.	1.9	116
85	Specific growth rate of Chlamydomonas reinhardtii and Chlorella sorokiniana under medium duration light/dark cycles: 13–87 s. Progress in Industrial Microbiology, 1999, 35, 323-333.	0.0	10
86	Specific growth rate of Chlamydomonas reinhardtii and Chlorella sorokiniana under medium duration light/dark cycles: 13–87 s. Journal of Biotechnology, 1999, 70, 323-333.	1.9	73