Peter Holzer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5150231/publications.pdf

Version: 2024-02-01

226 papers

13,264 citations

59 h-index 30058 103 g-index

260 all docs 260 docs citations

260 times ranked 11819 citing authors

#	Article	IF	Citations
1	Lack of peptide YY signaling in mice disturbs gut microbiome composition in response to highâ€fat diet. FASEB Journal, 2021, 35, e21435.	0.2	10
2	Dietary spermidine improves cognitive function. Cell Reports, 2021, 35, 108985.	2.9	98
3	Galanin receptor 3 attenuates inflammation and influences the gut microbiota in an experimental murine colitis model. Scientific Reports, 2021, 11, 564.	1.6	9
4	Constipation Caused by Anti-calcitonin Gene-Related Peptide Migraine Therapeutics Explained by Antagonism of Calcitonin Gene-Related Peptide's Motor-Stimulating and Prosecretory Function in the Intestine. Frontiers in Physiology, 2021, 12, 820006.	1.3	29
5	Synergistic and antagonistic interactions between antibiotics and synbiotics in modifying the murine fecal microbiome. European Journal of Nutrition, 2020, 59, 1831-1844.	1.8	9
6	Transient receptor potential ankyrin 1 contributes to somatic pain hypersensitivity in experimental colitis. Scientific Reports, 2020, 10, 8632.	1.6	18
7	Anhedonia induced by high-fat diet in mice depends on gut microbiota and leptin. Nutritional Neuroscience, 2020, , 1-14.	1.5	17
8	Influence of 4-week multi-strain probiotic administration on resting-state functional connectivity in healthy volunteers. European Journal of Nutrition, 2019, 58, 1821-1827.	1.8	64
9	A step ahead: Exploring the gut microbiota in inpatients with bipolar disorder during a depressive episode. Bipolar Disorders, 2019, 21, 40-49.	1.1	149
10	Intranasal Neuropeptide Y Blunts Lipopolysaccharide-Evoked Sickness Behavior but Not the Immune Response in Mice. Neurotherapeutics, 2019, 16, 1335-1349.	2.1	8
11	Amyloid-beta impairs insulin signaling by accelerating autophagy-lysosomal degradation of LRP-1 and IR-1 ² in blood-brain barrier endothelial cells in vitro and in 3XTg-AD mice. Molecular and Cellular Neurosciences, 2019, 99, 103390.	1.0	51
12	Intermittent Fasting Exacerbates the Acute Immune and Behavioral Sickness Response to the Viral Mimic Poly(I:C) in Mice. Frontiers in Neuroscience, 2019, 13, 359.	1.4	16
13	An Unbiased Approach of Sampling TEM Sections in Neuroscience. Journal of Visualized Experiments, 2019, , .	0.2	3
14	Experimental colitis reduces microglial cell activation in the mouse brain without affecting microglial cell numbers. Scientific Reports, 2019, 9, 20217.	1.6	24
15	Peptide YY (PYY). , 2019, , 546-554.		0
16	Epigenetics of the molecular clock and bacterial diversity in bipolar disorder. Psychoneuroendocrinology, 2019, 101, 160-166.	1.3	52
17	Diabesity and mood disorders: Multiple links through the microbiota-gut-brain axis. Molecular Aspects of Medicine, 2019, 66, 80-93.	2.7	51
18	High-fat diet induces depression-like behaviour in mice associated with changes in microbiome, neuropeptide Y, and brain metabolome. Nutritional Neuroscience, 2019, 22, 877-893.	1.5	133

#	Article	IF	CITATIONS
19	Gut Microbiota and the Neuroendocrine System. Neurotherapeutics, 2018, 15, 5-22.	2.1	295
20	Probiotics drive gut microbiome triggering emotional brain signatures. Gut Microbes, 2018, 9, 1-11.	4.3	146
21	Gut microbiota, dietary intakes and intestinal permeability reflected by serum zonulin in women. European Journal of Nutrition, 2018, 57, 2985-2997.	1.8	106
22	Towards microbiome-informed dietary recommendations for promoting metabolic and mental health: Opinion papers of the MyNewGut project. Clinical Nutrition, 2018, 37, 2191-2197.	2.3	29
23	The Potential Role of the Dipeptidyl Peptidase-4-Like Activity From the Gut Microbiota on the Host Health. Frontiers in Microbiology, 2018, 9, 1900.	1.5	47
24	Differences in psychological and somatic symptom cluster score profiles between subjects with Idiopathic environmental intolerance, major depression and schizophrenia. Psychiatry Research, 2017, 249, 187-194.	1.7	5
25	Visceral hyperalgesia caused by peptide YY deletion and Y2 receptor antagonism. Scientific Reports, 2017, 7, 40968.	1.6	22
26	Interoception and Gut Feelings: Unconscious Body Signals' Impact on Brain Function, Behavior and Belief Processes. New Approaches To the Scientific Study of Religion, 2017, , 435-442.	0.3	13
27	Gut microbiota and body composition in anorexia nervosa inpatients in comparison to athletes, overweight, obese, and normal weight controls. International Journal of Eating Disorders, 2017, 50, 1421-1431.	2.1	119
28	Diverse action of lipoteichoic acid and lipopolysaccharide on neuroinflammation, blood-brain barrier disruption, and anxiety in mice. Brain, Behavior, and Immunity, 2017, 60, 174-187.	2.0	66
29	Visceral Inflammation and Immune Activation Stress the Brain. Frontiers in Immunology, 2017, 8, 1613.	2.2	50
30	Neuropeptides, Microbiota, and Behavior. International Review of Neurobiology, 2016, 131, 67-89.	0.9	41
31	Environmental enrichment induces behavioural disturbances in neuropeptide Y knockout mice. Scientific Reports, 2016, 6, 28182.	1.6	23
32	Inhibition of Â2A-Adrenoceptors Ameliorates Dextran Sulfate Sodium-Induced Acute Intestinal Inflammation in Mice. Journal of Pharmacology and Experimental Therapeutics, 2016, 358, 483-491.	1.3	4
33	Deletion of Monoglyceride Lipase in Astrocytes Attenuates Lipopolysaccharide-induced Neuroinflammation. Journal of Biological Chemistry, 2016, 291, 913-923.	1.6	55
34	Cognitive impairment by antibiotic-induced gut dysbiosis: Analysis of gut microbiota-brain communication. Brain, Behavior, and Immunity, 2016, 56, 140-155.	2.0	500
35	Neuropeptide Y: A stressful review. Neuropeptides, 2016, 55, 99-109.	0.9	326
36	Gastrointestinal motility drugs in critical illness. , 2016, , .		0

#	Article	IF	CITATIONS
37	Reevaluating the hype: four bacterial metabolites under scrutiny. European Journal of Microbiology and Immunology, 2015 , 5 , $1-13$.	1.5	6
38	Behavioral and molecular processing of visceral pain in the brain of mice: impact of colitis and psychological stress. Frontiers in Behavioral Neuroscience, 2015, 9, 177.	1.0	39
39	The homeostatic role of neuropeptide <scp>Y</scp> in immune function and its impact on mood and behaviour. Acta Physiologica, 2015, 213, 603-627.	1.8	113
40	Acid-sensing ion channels in gastrointestinal function. Neuropharmacology, 2015, 94, 72-79.	2.0	56
41	Dextran sulfate sodium-induced colitis alters stress-associated behaviour and neuropeptide gene expression in the amygdala-hippocampus network of mice. Scientific Reports, 2015, 5, 9970.	1.6	62
42	Toll-like receptor 4 contributes to the inhibitory effect of morphine on colonic motility in vitro and in vivo. Scientific Reports, 2015, 5, 9499.	1.6	24
43	Neuroimmune pharmacological approaches. Current Opinion in Pharmacology, 2015, 25, 13-22.	1.7	40
44	Synergistic effects of NOD1 or NOD2 and TLR4 activation on mouse sickness behavior in relation to immune and brain activity markers. Brain, Behavior, and Immunity, 2015, 44, 106-120.	2.0	53
45	A novel unbiased counting method for the quantification of synapses in the mouse brain. Journal of Neuroscience Methods, 2015, 240, 13-21.	1.3	9
46	Naloxegol increases frequency of bowel movements and combats inadequate response to laxatives. Evidence-Based Medicine, 2015, 20, 5-5.	0.6	2
47	Repeated predictable stress causes resilience against colitis-induced behavioral changes in mice. Frontiers in Behavioral Neuroscience, 2014, 8, 386.	1.0	48
48	<i> GAL ₃ receptor </i> KO mice exhibit an anxiety-like phenotype. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 7138-7143.	3.3	57
49	The pharmacology of <scp>TRP</scp> channels. British Journal of Pharmacology, 2014, 171, 2469-2473.	2.7	59
50	Pharmacology of Opioids and their Effects on Gastrointestinal Function. American Journal of Gastroenterology Supplements (Print), 2014, 2, 9-16.	0.7	33
51	Neuropeptides and the Microbiota-Gut-Brain Axis. Advances in Experimental Medicine and Biology, 2014, 817, 195-219.	0.8	321
52	Biosimilars – aktueller Stellenwert. Intrinsic Activity, 2014, 2, e4.	0.0	0
53	Neuropeptide <scp>Y</scp> and peptide <scp>YY</scp> protect from weight loss caused by <scp>B</scp> acille <scp>C</scp> almetteâ€" <scp>G</scp> uÃ@rin in mice. British Journal of Pharmacology, 2013, 170, 1014-1026.	2.7	15
54	Tachykinins. , 2013, , 1330-1337.		0

#	Article	IF	Citations
55	Myeloperoxidase-Derived Oxidants Induce Blood-Brain Barrier Dysfunction In Vitro and In Vivo. PLoS ONE, 2013, 8, e64034.	1.1	71
56	Environmental Enrichment and Gut Inflammation Modify Stress-Induced c-Fos Expression in the Mouse Corticolimbic System. PLoS ONE, 2013, 8, e54811.	1.1	35
57	Non-Analgesic Effects of Opioids: Management of Opioid-Induced Constipation by Peripheral Opioid Receptor Antagonists: Prevention or Withdrawal?. Current Pharmaceutical Design, 2012, 18, 6010-6020.	0.9	31
58	In vitro Effect of Bethanechol and Suberyldicholine on Regions of Guinea Pig Esophagus. Journal of Surgical Research, 2012, 174, 56-61.	0.8	5
59	Neuropeptide Y, peptide YY and pancreatic polypeptide in the gut–brain axis. Neuropeptides, 2012, 46, 261-274.	0.9	390
60	Bacterial peptidoglycan primes the immune system leading to increased sickness in response to lipopolysaccharide. BMC Pharmacology & Empty 2012, 13, .	1.0	0
61	Peptide YY and neuropeptide Y in regulation of pain and spatial learning and memory. BMC Pharmacology & Description (2012) and the second seco	1.0	1
62	Environmental enrichment and visceral inflammation regulate stress-induced c-Fos and NPY expression within the dentate gyrus. BMC Pharmacology & Environmental enrichment and visceral inflammation regulate stress-induced c-Fos and NPY expression within the dentate gyrus. BMC Pharmacology & Environmental enrichment and visceral inflammation regulate stress-induced c-Fos and NPY expression within the dentate gyrus.	1.0	1
63	Neural Regulation of Gastrointestinal Blood Flow. , 2012, , 817-845.		11
64	Gene–environment interaction influences anxiety-like behavior in ethologically based mouse models. Behavioural Brain Research, 2011, 218, 99-105.	1.2	44
65	TRP Channels in the Digestive System. Current Pharmaceutical Biotechnology, 2011, 12, 24-34.	0.9	88
66	Sexâ€dependent control of murine emotionalâ€affective behaviour in health and colitis by peptide YY and neuropeptide Y. British Journal of Pharmacology, 2011, 163, 1302-1314.	2.7	76
67	Acid sensing by visceral afferent neurones. Acta Physiologica, 2011, 201, 63-75.	1.8	89
68	Transient receptor potential (TRP) channels as drug targets for diseases of the digestive system., 2011, 131, 142-170.		197
69	Bacterial peptidoglycan enhances sickness behaviour induced by bacterial lipopolysaccharide. BMC Pharmacology, $2011,11,\ldots$	0.4	0
70	Prolonged Depression-Like Behavior Caused by Immune Challenge: Influence of Mouse Strain and Social Environment. PLoS ONE, 2011, 6, e20719.	1.1	64
71	Opioid antagonists for prevention and treatment of opioid-induced gastrointestinal effects. Current Opinion in Anaesthesiology, 2010, 23, 616-622.	0.9	49
72	Chemoâ€nociceptive signalling from the colon is enhanced by mild colitis and blocked by inhibition of transient receptor potential ankyrin 1 channels. British Journal of Pharmacology, 2010, 160, 1430-1442.	2.7	53

#	Article	IF	CITATIONS
73	Delayed stress-induced differences in locomotor and depression-related behaviour in female neuropeptide-Y Y1 receptor knockout mice. Journal of Psychopharmacology, 2010, 24, 1541-1549.	2.0	23
74	Evidence from knockout mice that neuropeptide-Y Y2 and Y4 receptor signalling prevents long-term depression-like behaviour caused by immune challenge. Journal of Psychopharmacology, 2010, 24, 1551-1560.	2.0	30
75	Demenz und Schmerz. Neuropsychiatrie, 2010, , .	1.3	1
76	Meeting the Challenges of Opioid-Induced Constipation in Chronic Pain Management $\hat{a} \in A$ Novel Approach. Pharmacology, 2009, 83, 10-17.	0.9	76
77	Preface. Digestive Diseases, 2009, 27, 1-2.	0.8	1
78	Pharmacology of Inflammatory Pain: Local Alteration in Receptors and Mediators. Digestive Diseases, 2009, 27, 24-30.	0.8	12
79	Evidence from knockout mice for distinct implications of neuropeptide-Y Y2 and Y4 receptors in the circadian control of locomotion, exploration, water and food intake. Neuropeptides, 2009, 43, 491-497.	0.9	43
80	The gut-mood axis: a novel role of the gut hormone peptide YY on emotional-affective behaviour in mice. BMC Pharmacology, 2009, 9 , .	0.4	6
81	Afferent signalling from the acid-challenged rat stomach is inhibited and gastric acid elimination is enhanced by lafutidine. BMC Gastroenterology, 2009, 9, 40.	0.8	6
82	Alosetron, cilansetron and tegaserod modify mesenteric but not colonic blood flow in rats. British Journal of Pharmacology, 2009, 158, 1210-1226.	2.7	12
83	Evidence from knockout mice that peptide YY and neuropeptide Y enforce murine locomotion, exploration and ingestive behaviour in a circadian cycle- and gender-dependent manner. Behavioural Brain Research, 2009, 203, 97-107.	1.2	33
84	Opioid receptors in the gastrointestinal tract. Regulatory Peptides, 2009, 155, 11-17.	1.9	303
85	Acid-Sensitive Ion Channels and Receptors. Handbook of Experimental Pharmacology, 2009, , 283-332.	0.9	234
86	The Role of the Vagus Nerve in Afferent Signaling and Homeostasis During Visceral Inflammation. NeuroImmune Biology, 2009, 8, 321-338.	0.2	5
87	Opioid-induced bowel dysfunction in cancer-related pain: Causes, consequences, and a novel approach for its management. Journal of Opioid Management, 2009, 5, 145-151.	0.2	80
88	Emerging pharmacological therapies. , 2009, , 51-62.		0
89	Einfluss akuter Erkrankungen auf die DarmmotilitĤ Wiener Klinische Wochenschrift, 2008, 120, 6-17.	1.0	43
90	Long-term depression-like effect of a single immune challenge in neuropeptide Y Y2 and Y4 receptor knockout mice. BMC Pharmacology, 2008, 8, .	0.4	0

#	Article	IF	CITATIONS
91	Reduced anxietyâ€like and depressionâ€related behavior in neuropeptide Y Y4 receptor knockout mice. Genes, Brain and Behavior, 2008, 7, 532-542.	1.1	77
92	The pharmacological challenge to tame the transient receptor potential vanilloidâ€4 (TRPV1) nocisensor. British Journal of Pharmacology, 2008, 155, 1145-1162.	2.7	152
93	Standardized concept for the treatment of gastrointestinal dysmotility in critically ill patientsâ€"Current status and future options. Clinical Nutrition, 2008, 27, 25-41.	2.3	75
94	Implication of neuropeptide-Y Y2 receptors in the effects of immune stress on emotional, locomotor and social behavior of mice. Neuropharmacology, 2008, 55, 117-126.	2.0	52
95	Deletion of the acid-sensing ion channel ASIC3 prevents gastritis-induced acid hyperresponsiveness of the stomach–brainstem axis. Pain, 2008, 134, 245-253.	2.0	56
96	TRPV1: a new target for treatment of visceral pain in IBS?. Gut, 2008, 57, 882-884.	6.1	43
97	Methylnaltrexone for the management of unwanted peripheral opioid effects. Therapy: Open Access in Clinical Medicine, 2008, 5, 531-543.	0.2	13
98	Treatment of opioid-induced gut dysfunction. Expert Opinion on Investigational Drugs, 2007, 16, 181-194.	1.9	101
99	Involvement of endothelial NO in the dilator effect of VIP on rat isolated pulmonary artery. Regulatory Peptides, 2007, 139, 102-108.	1.9	26
100	Role of visceral afferent neurons in mucosal inflammation and defense. Current Opinion in Pharmacology, 2007, 7, 563-569.	1.7	108
101	Multidrug-resistance gene 1-type p-glycoprotein (MDR1 p-gp) inhibition by tariquidar impacts on neuroendocrine and behavioral processing of stress. Psychoneuroendocrinology, 2007, 32, 1028-1040.	1.3	17
102	Taste Receptors in the Gastrointestinal Tract. V. Acid sensing in the gastrointestinal tract. American Journal of Physiology - Renal Physiology, 2007, 292, G699-G705.	1.6	80
103	The enantiomers of tramadol and its major metabolite inhibit peristalsis in the guinea pig small intestine via differential mechanisms. BMC Pharmacology, 2007, 7, 5.	0.4	14
104	Intestinal motility disturbances in intensive care patients pathogenesis and clinical impact. Intensive Care Medicine, 2007, 33, 36-44.	3.9	98
105	Efferent-like roles of afferent neurons in the gut: Blood flow regulation and tissue protection. Autonomic Neuroscience: Basic and Clinical, 2006, 125, 70-75.	1.4	93
106	Selective increase of dark phase water intake in neuropeptide-Y Y2 and Y4 receptor knockout mice. Behavioural Brain Research, 2006, 168, 255-260.	1.2	9
107	Neural Regulation of Gastrointestinal Blood Flow. , 2006, , 817-839.		6
108	Substance P and Related Tachykinins in the Gastrointestinal Tract. , 2006, , 1139-1145.		1

#	Article	IF	Citations
109	Pro-Drugs in In Vitro Experiments. Anesthesia and Analgesia, 2005, 101, 606.	1.1	3
110	Peristalsis in the Guinea Pig Small Intestine In Vitro Is Impaired by Acetaminophen but Not Aspirin and Dipyrone. Anesthesia and Analgesia, 2005, 100, 120-127.	1.1	28
111	Differential effects of intragastric acid and capsaicin on gastric emptying and afferent input to the rat spinal cord and brainstem. BMC Neuroscience, 2005, 6, 60.	0.8	21
112	TRPV1 in gut function, abdominal pain and functional bowel disorders., 2005, , 147-165.		0
113	Calcitonin Gene-Related Peptide (CGRP). , 2004, , 241-247.		0
114	Gastrointestinal pain in functional bowel disorders: sensory neurons as novel drug targets. Expert Opinion on Therapeutic Targets, 2004, 8, 107-123.	1.5	39
115	Inhibition of Guinea Pig Intestinal Peristalsis by the Flavonoids Quercetin, Naringenin, Apigenin and Genistein. Pharmacology, 2004, 70, 5-14.	0.9	51
116	Stomach-brain communication by vagal afferents in response to luminal acid backdiffusion, gastrin, and gastric acid secretion. American Journal of Physiology - Renal Physiology, 2004, 286, G403-G411.	1.6	34
117	Immunocytochemical characterization of rat brainstem neurons with vagal afferent input from the stomach challenged by acid or ammonia. European Journal of Neuroscience, 2004, 19, 85-92.	1.2	15
118	Vanilloid receptor TRPV1: hot on the tongue and inflaming the colon. Neurogastroenterology and Motility, 2004, 16, 697-699.	1.6	34
119	Increased expression of TRPV1 receptor in dorsal root ganglia by acid insult of the rat gastric mucosa. European Journal of Neuroscience, 2004, 19, 1811-1818.	1.2	105
120	Effects of capsaicin on visceral smooth muscle: a valuable tool for sensory neurotransmitter identification. European Journal of Pharmacology, 2004, 500, 143-157.	1.7	55
121	TRPV1 and the gut: from a tasty receptor for a painful vanilloid to a key player in hyperalgesia. European Journal of Pharmacology, 2004, 500, 231-241.	1.7	157
122	Differential reversal of drug-induced small bowel paralysis by cerulein and neostigmine. Intensive Care Medicine, 2004, 30, 1414-20.	3.9	9
123	Newly discovered tachykinins raise new questions about their peripheral roles and the tachykinin nomenclature. Trends in Pharmacological Sciences, 2004, 25, 1-3.	4.0	77
124	Opioids and opioid receptors in the enteric nervous system: from a problem in opioid analgesia to a possible new prokinetic therapy in humans. Neuroscience Letters, 2004, 361, 192-195.	1.0	168
125	GI-CGRP (Calcitonin Gene-Related Peptide). , 2004, , 157-161.		0
126	Evidence for chemical nociception in the small intestine that is not mediated via mechanoreceptors. Gastroenterology, 2003, 124, A250.	0.6	1

#	Article	IF	Citations
127	Three mechanisms of gut-brain communication induced by peripheral pentagastrin: Acid- and Cckl receptor-mediated stimulation of vagal afferents and Cck2 receptor-mediated stimulation of area postrema neurons. Gastroenterology, 2003, 124, A116.	0.6	0
128	5-HT3 receptor antagonists, alosetron and cilansetron, impair mesenteric blood flow in rats. Gastroenterology, 2003, 124, A148.	0.6	15
129	Comparison of the prokinetic effect of neostigmine and cerulein. Gastroenterology, 2003, 124, A164-A165.	0.6	0
130	Acid-sensitive ion channels in gastrointestinal function. Current Opinion in Pharmacology, 2003, 3, 618-625.	1.7	76
131	Evaluation of Peristalsis in Multiple Segments of the Guinea-pig Isolated Small Intestine: Optimisation of Tissue Use by Refined In Vitro Methodology. ATLA Alternatives To Laboratory Animals, 2003, 31, 419-427.	0.7	2
132	Inhibition by Female Sex Steroids of Peristalsis in the Guinea Pig Small Intestine. Digestion, 2002, 65, 213-219.	1.2	13
133	Clonidine and Dexmedetomidine Potently Inhibit Peristalsis in the Guinea Pig Ileum In VitroÂ. Anesthesiology, 2002, 97, 1491-1499.	1.3	47
134	Involvement of $\hat{l}^{1}\!\!/_{4}$ - and \hat{l}° -, but not \hat{l} -, opioid receptors in the peristaltic motor depression caused by endogenous and exogenous opioids in the guinea-pig intestine. British Journal of Pharmacology, 2002, 135, 741-750.	2.7	67
135	Differential peristaltic motor effects of prostanoid (DP, EP, IP, TP) and leukotriene receptor agonists in the guinea-pig isolated small intestine. British Journal of Pharmacology, 2002, 137, 1047-1054.	2.7	25
136	Control of Gastric Functions by Extrinsic Sensory Neurons. , 2002, , 103-170.		2
137	Cooperation of NMDA and tachykinin NK1 and NK2 receptors in the medullary transmission of vagal afferent input from the acid-threatened rat stomach. Pain, 2001, 89, 147-157.	2.0	19
138	Vagal afferent signaling of a gastric mucosal acid insult to medullary, pontine, thalamic, hypothalamic and limbic, but not cortical, nuclei of the rat brain. Pain, 2001, 92, 19-27.	2.0	72
139	Role of tachykinin receptors in the central processing of afferent input from the acid-threatened rat stomach. Regulatory Peptides, 2001, 102, 119-126.	1.9	6
140	Tachykinin receptors in the gut: physiological and pathological implications. Current Opinion in Pharmacology, 2001, 1, 583-590.	1.7	128
141	Mucosal acid challenge activates nitrergic neurons in myenteric plexus of rat stomach. American Journal of Physiology - Renal Physiology, 2001, 281, G1316-G1321.	1.6	14
142	Differential effects of clonidine, dopamine, dobutamine, and dopexamine on basal and acid-stimulated mucosal blood flow in the rat stomach. Critical Care Medicine, 2001, 29, 335-343.	0.4	11
143	Gastroduodenal mucosal defense: coordination by a network of messengers and mediators. Current Opinion in Gastroenterology, 2001, 17, 489-496.	1.0	21
144	Disturbance of peristalsis in the guinea-pig isolated small intestine by indomethacin, but not cyclo-oxygenase isoform-selective inhibitors. British Journal of Pharmacology, 2001, 132, 1299-1309.	2.7	20

#	Article	IF	Citations
145	Gastrointestinal afferents as targets of novel drugs for the treatment of functional bowel disorders and visceral pain. European Journal of Pharmacology, 2001, 429, 177-193.	1.7	66
146	PACAP-(6–38) inhibits the effects of vasoactive intestinal polypeptide, but not PACAP, on the small intestinal circular muscle. European Journal of Pharmacology, 2001, 431, 259-264.	1.7	11
147	Gastroduodenal mucosal defense. Current Opinion in Gastroenterology, 2000, 16, 469-478.	1.0	23
148	Low potential of dobutamine and dopexamine to block intestinal peristalsis as compared with other catecholamines. Critical Care Medicine, 2000, 28, 2893-2897.	0.4	43
149	Tachykinin autoreceptors in the gut. Trends in Pharmacological Sciences, 2000, 21, 166.	4.0	26
150	Cotransmitter role of tachykinins and glutamate in the afferent signalling of a gastric acid insult. Gastroenterology, 2000, 118, A388.	0.6	0
151	Regulation of Guinea pig intestinal peristalsis by endogenous endothelin acting at ETB receptors. Gastroenterology, 2000, 119, 80-88.	0.6	17
152	Regulation of guinea-pig intestinal peristalsis by endogenous endothelin acting at ETB receptors. Gastroenterology, 2000, 118, A876.	0.6	0
153	Gastric vasodilatation in the rat by cannabinoid (CB) receptor activation: Involvement of sensory neurons and nitric oxide (NO). Gastroenterology, 2000, 118, A828.	0.6	0
154	Central processing of vagal afferent input from the acid-injured rat stomach: Implications for dyspepsia?. Gastroenterology, 2000, 118, A622.	0.6	0
155	Control of peristalsis in the guinea-pig isolated intestine by cyclooxygenase isoforms COX-1 and COX-2. Gastroenterology, 2000, 118, A631.	0.6	0
156	Tachykinins. , 2000, , 113-146.		0
157	Visceral Afferent Neurons: Role in Gastric Mucosal Protection. Physiology, 1999, 14, 201-206.	1.6	4
158	Intestinal Motor Depression by 7-Nitroindazole through an Action Unrelated to Nitric Oxide Synthase Inhibition. Pharmacology, 1999, 59, 310-320.	0.9	4
159	Stimulant action of pituitary adenylate cyclase-activating peptide on normal and drug-compromised peristalsis in the guinea-pig intestine. British Journal of Pharmacology, 1999, 127, 763-771.	2.7	17
160	Different receptors mediating the inhibitory action of exogenous ATP and endogenously released purines on guinea-pig intestinal peristalsis. British Journal of Pharmacology, 1999, 128, 313-320.	2.7	32
161	Protective effect of cromakalim and diazoxide, and proulcerogenic effect of glibenclamide on indomethacin-induced gastric injury. European Journal of Pharmacology, 1999, 374, 461-470.	1.7	25
162	Cannabinoid inhibition of guinea-pig intestinal peristalsis via inhibition of excitatory and activation of inhibitory neural pathways. Neuropharmacology, 1999, 38, 1289-1297.	2.0	69

#	Article	IF	CITATIONS
163	Neuropeptides and the gut: Tachykinins and calcitonin gene-related peptide in intestinal inflammation and pain., 1999,, 225-244.		O
164	Mediation by 5-hydroxytryptamine of the femoral vasoconstriction induced by acid challenge of the rat gastric mucosa. Journal of Physiology, 1998, 509, 541-550.	1.3	11
165	Lack of effect of a selective vasopressin V1A receptor antagonist, SR 49,059, on potentiation by vasopressin of adrenoceptor-mediated pressor responses in the rat mesenteric arterial bed. British Journal of Pharmacology, 1998, 125, 1120-1127.	2.7	4
166	Neurogenic vasodilatation and plasma leakage in the skin. General Pharmacology, 1998, 30, 5-11.	0.7	401
167	Tachykinin NK1 and NK2 receptor-mediated control of peristaltic propulsion in the guinea-pig small intestine in vitro. Neuropharmacology, 1998, 37, 131-138.	2.0	72
168	Gastric acid–evoked c-fos messenger RNA expression in rat brainstem is signaled by capsaicin-resistant vagal afferents. Gastroenterology, 1998, 115, 649-660.	0.6	90
169	Neural emergency system in the stomach. Gastroenterology, 1998, 114, 823-839.	0.6	260
170	Implications of Tachykinins and Calcitonin Gene-Related Peptide in Inflammatory Bowel Disease. Digestion, 1998, 59, 269-283.	1.2	137
171	II. The elusive action of capsaicin on the vagus nerve. American Journal of Physiology - Renal Physiology, 1998, 275, G8-G13.	1.6	33
172	Involvement of nitric oxide in the substance P-induced inhibition of intestinal peristalsis. NeuroReport, 1997, 8, 2857-2860.	0.6	35
173	Inhibition of acid-induced hyperaemia in the rat stomach by endogenous NK2 receptor ligands. Neuroscience Letters, 1997, 237, 133-135.	1.0	11
174	Nitric oxide-dependent and -independent vascular hyporeactivity in mesenteric arteries of portal hypertensive rats. British Journal of Pharmacology, 1997, 121, 1031-1037.	2.7	26
175	Dilatation by angiotensin II of the rat femoral arterial bed in vivo via pressure/flow-induced release of nitric oxide and prostaglandins. British Journal of Pharmacology, 1997, 122, 975-984.	2.7	10
176	Tachykinins in the gut. Part I. Expression, release and motor function., 1997, 73, 173-217.		303
177	Tachykinins in the gut. Part II. Roles in neural excitation, secretion and inflammation., 1997, 73, 219-263.		219
178	Gastric mucosal blood flow regulation in response to different stimuli. Digestive Diseases and Sciences, 1997, 42, 1873-1879.	1.1	4
179	Tachykinin inhibition of acidâ€induced gastric hyperaemia in the rat. British Journal of Pharmacology, 1996, 119, 1525-1532.	2.7	17
180	Power games in Austrian science. Nature, 1996, 384, 404-404.	13.7	16

#	Article	IF	Citations
181	The inhibitory modulation of guinea-pig intestinal peristalsis caused by capsaicin involves calcitonin gene-related peptide and nitric oxide. Naunyn-Schmiedeberg's Archives of Pharmacology, 1995, 353, 102-9.	1.4	29
182	Paralytic ileus in a fetus–neonate after maternal intake of benzodiazepine. Prenatal Diagnosis, 1995, 15, 1165-1167.	1.1	9
183	Mediation by CCK _B receptors of the CCKâ€evoked hyperaemia in rat gastric mucosa. British Journal of Pharmacology, 1995, 116, 2274-2278.	2.7	17
184	Mediation by prostaglandins of the nitric oxideâ€induced neurogenic vasodilatation in rat skin. British Journal of Pharmacology, 1995, 116, 2365-2370.	2.7	33
185	Activity of SR 142801 at peripheral tachykinin receptors. European Journal of Pharmacology, 1995, 278, 17-25.	1.7	77
186	Neonatal capsaicin treatment does not prevent splanchnic vasodilatation in portal-hypertensive rats. Hepatology, 1994, 20, 1609-1614.	3.6	15
187	Synergistic role of muscarinic acetylcholine and tachykinin NK-2 receptors in intestinal peristalsis. Naunyn-Schmiedeberg's Archives of Pharmacology, 1994, 349, 194-201.	1.4	40
188	Effect of ?-conotoxin on cholinergic and tachykininergic excitatory neurotransmission to the circular muscle of the guinea-pig colon. Naunyn-Schmiedeberg's Archives of Pharmacology, 1994, 350, 529-36.	1.4	25
189	Nitric oxide mediates the amplification by interleukin- $1\hat{l}^2$ of neurogenic vasodilatation in the rat skin. European Journal of Pharmacology, 1994, 260, 89-93.	1.7	17
190	Pharmacological profile of selective muscarinic receptor antagonists on guinea-pig ileal smooth muscle. European Journal of Pharmacology, 1994, 253, 275-281.	1.7	31
191	Tachykinin NK ₁ and NK ₂ receptor antagonists and atropineâ€resistant ascending excitatory reflex to the circular muscle of the guineaâ€pig ileum. British Journal of Pharmacology, 1994, 112, 161-168.	2.7	35
192	Role of bradykinin in the hyperaemia following acid challenge of the rat gastric mucosa. British Journal of Pharmacology, 1994, 113, 1036-1042.	2.7	20
193	Local Effector Functions of Primary Afferent Nerve Fibres. , 1994, , 133-147.		0
194	Gastric hyperemia accompanying acid secretion is not mediated by sensory nerves. Digestive Diseases and Sciences, 1993, 38, 1190-1194.	1.1	5
195	A monoclonal antibody to calcitonin gene-related peptide abolishes capsaicin-induced gastroprotection. European Journal of Pharmacology, 1993, 250, 201-203.	1.7	25
196	Participation of nitric oxide in the mustard oil-induced neurogenic i inflammation of the rat paw skin. European Journal of Pharmacology, 1993, 232, 113-120.	1.7	67
197	Peptidergic Sensory Neurons in the Local Regulation of Splanchnic Blood Flow., 1993,, 299-321.		2
198	Peptidergic sensory neurons in the control of vascular functions: Mechanisms and significance in the cutaneous and splanchnic vascular beds., 1992, 121, 49-146.		196

#	Article	IF	Citations
199	Participation of endotheliumâ€derived nitric oxide but not prostacyclin in the gastric mucosal hyperaemia due to acid backâ€diffusion. British Journal of Pharmacology, 1992, 105, 708-714.	2.7	103
200	Role of Calcitonin Gene-Related Peptide in Gastrointestinal Blood Flow. Annals of the New York Academy of Sciences, 1992, 657, 228-239.	1.8	15
201	Reflex gastric motor inhibition caused by intraperitoneal bradykinin: Antagonism by Hoe 140, a bradykinin antagonist. Peptides, 1992, 13, 1073-1077.	1.2	9
202	Selective ablation of spinal afferent neurons containing CGRP attenuates gastric hyperemic response to acid. Peptides, 1992, 13, 249-254.	1.2	59
203	Sensory neurons signal for an increase in rat gastric mucosal blood flow in the face of pending acid injury. Gastroenterology, 1991, 101, 416-423.	0.6	184
204	Capsaicin as a Tool for Studying Sensory Neuron Functions. Advances in Experimental Medicine and Biology, 1991, 298, 3-16.	0.8	76
205	Vagal Afferent Innervation and Regulation of Gastric Function. Advances in Experimental Medicine and Biology, 1991, 298, 109-127.	0.8	7
206	Afferent Nerve-Mediated Control of Gastric Mucosal Blood Flow and Protection. Advances in Experimental Medicine and Biology, 1991, 298, 97-108.	0.8	6
207	Laparotomy-induced gastric protection against ethanol injury is mediated by capsaicin-sensitive sensory neurons. Gastroenterology, 1990, 99, 3-9.	0.6	73
208	Nerves and gastric mucosal protection. Digestive Diseases and Sciences, 1990, 35, 1048-1049.	1.1	1
209	Capsaicin-sensitive vagal afferents contribute to gastric acid and vascular responses to intracisternal TRH analog. Peptides, 1990, 11, 789-795.	1.2	40
210	Peppers, Capsaicin, and the Gastric Mucosa. JAMA - Journal of the American Medical Association, 1989, 261, 3244.	3.8	3
211	Calcitonin gene-related peptide is a potent relaxant of intestinal muscle. European Journal of Pharmacology, 1987, 135, 449-451.	1.7	65
212	Evaluation of a new and potent cholecystokinin antagonist on motor responses of the guineaâ€pig intestine. British Journal of Pharmacology, 1987, 90, 753-761.	2.7	30
213	The inhibitory effect of neurotensin on the motor activity of rabbit ileum: Dependence on the ionic environment. European Journal of Pharmacology, 1985, 117, 329-335.	1.7	4
214	A study of the mode and site of action of capsaicin in guinea-pig heart and rat uterus. Naunyn-Schmiedeberg's Archives of Pharmacology, 1984, 326, 58-63.	1.4	38
215	Release of dynorphin, somatostatin and substance P from the vascularly perfused small intestine of the guineaâ€pig during peristalsis. British Journal of Pharmacology, 1984, 83, 919-925.	2.7	66
216	[D-Met2,Pro5]enkephalinamide and dynorphin-(1–13) inhibit the cholinergic contraction induced in the guinea-pig ileum by substance P. European Journal of Pharmacology, 1983, 91, 83-88.	1.7	10

#	Article	IF	CITATIONS
217	An enquiry into the mechanism by which substance P facilitates the phasic longitudinal contractions of the rabbit ileum. Journal of Physiology, 1982, 325, 377-392.	1.3	12
218	Substance P immunoreactive neurons following neonatal administration of capsaicin. Naunyn-Schmiedeberg's Archives of Pharmacology, 1981, 315, 185-194.	1.4	78
219	Differential effects of capsaicin on the content of somatostatin, substance P, and neurotensin in the nervous system of the rat. Naunyn-Schmiedeberg's Archives of Pharmacology, 1981, 317, 140-148.	1.4	303
220	Caerulein, substance P, serotonin, and cholinomimetics induce rhythmic contractions of the intestinal circular muscle. Naunyn-Schmiedeberg's Archives of Pharmacology, 1980, 312, 131-137.	1.4	54
221	Distribution of substance P in the rat gastrointestinal tract â€" Lack of effect of capsaicin pretreatment. European Journal of Pharmacology, 1980, 61, 303-307.	1.7	134
222	Longitudinal contraction of isolated guinea-pig ileum induced by rapid cooling. Naunyn-Schmiedeberg's Archives of Pharmacology, 1979, 310, 169-174.	1.4	16
223	Substance P as neurogenic mediator of antidromic vasodilation and neurogenic plasma extravasation. Naunyn-Schmiedeberg's Archives of Pharmacology, 1979, 310, 175-183.	1.4	1,113
224	Nociceptive threshold after neonatal capsaicin treatment. European Journal of Pharmacology, 1979, 58, 511-514.	1.7	131
225	Tachykinin Receptor Antagonists: Silencing Neuropeptides with a Role in the Disturbed Gut., 0,, 212-227.		1
226	Gut Signals and Gut Feelings: Science at the Interface of Data and Beliefs. Frontiers in Behavioral Neuroscience, 0, 16, .	1.0	3