
Xingxing Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5150145/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Redox competition mode of scanning electrochemical microscopy (RC-SECM) for visualisation of local catalytic activity. Physical Chemistry Chemical Physics, 2006, 8, 5359.	1.3	180
2	Rational design of the electrode morphology for oxygen evolution – enhancing the performance for catalytic water oxidation. RSC Advances, 2014, 4, 9579.	1.7	117
3	Thermophilic anaerobic digestion of source-sorted organic fraction of household municipal solid waste: Start-up procedure for continuously stirred tank reactor. Water Research, 2006, 40, 2621-2628.	5.3	109
4	Green needle coke-derived porous carbon for high-performance symmetric supercapacitor. Journal of Power Sources, 2021, 494, 229770.	4.0	93
5	Pulsed electrodeposition of Pt nanoclusters on carbon nanotubes modified carbon materials using diffusion restricting viscous electrolytes. Electrochemistry Communications, 2007, 9, 1348-1354.	2.3	86
6	Dual oxidation and sulfurization enabling hybrid Co/Co3O4@CoS in S/N-doped carbon matrix for bifunctional oxygen electrocatalysis and rechargeable Zn-air batteries. Chemical Engineering Journal, 2021, 419, 129619.	6.6	77
7	Self-assembled S,N co-doped reduced graphene oxide/MXene aerogel for both symmetric liquid- and all-solid-state supercapacitors. Journal of Power Sources, 2021, 516, 230682.	4.0	51
8	Oneâ€pot Synthesized Co/Co ₃ O ₄ â€Nâ€Graphene Composite as Electrocatalyst for Oxygen Reduction Reaction and Oxygen Evolution Reaction. Electroanalysis, 2016, 28, 2435-2443.	1.5	48
9	Visualization of local electrocatalytic activity of metalloporphyrins towards oxygen reduction by means of redox competition scanning electrochemical microscopy (RC-SECM). Electrochimica Acta, 2009, 54, 4971-4978.	2.6	46
10	Electrocatalytic Activity of Spots of Electrodeposited Noble-Metal Catalysts on Carbon Nanotubes Modified Glassy Carbon. Analytical Chemistry, 2009, 81, 7597-7603.	3.2	44
11	Agar-based porous electrode and electrolyte for flexible symmetric supercapacitors with ultrahigh energy density. Journal of Power Sources, 2021, 507, 230252.	4.0	44
12	Highly-stable cobalt metal organic framework with sheet-like structure for ultra-efficient water oxidation at high current density. Journal of Colloid and Interface Science, 2022, 611, 599-608.	5.0	43
13	Visualization of electrocatalytic activity of microstructured metal hexacyanoferrates by means of redox competition mode of scanning electrochemical microscopy (RC-SECM). Electrochimica Acta, 2009, 54, 3753-3758.	2.6	42
14	Visualization of the Local Catalytic Activity of Electrodeposited Pt–Ag Catalysts for Oxygen Reduction by means of SECM. ChemPhysChem, 2009, 10, 2711-2718.	1.0	41
15	The Catalytic Synthesis of Threeâ€Dimensional Hierarchical Carbon Nanotube Composites with High Electrical Conductivity Based on Electrochemical Iron Deposition. Advanced Materials, 2007, 19, 2957-2960.	11.1	40
16	Chemical vapor synthesis of secondary carbon nanotubes catalyzed by iron nanoparticles electrodeposited on primary carbon nanotubes. Surface and Coatings Technology, 2007, 201, 9232-9237.	2.2	39
17	Preparation and Characterization of Coal-Pitch-Based Needle Coke (Part III): The Effects of Quinoline Insoluble in Coal Tar Pitch. Energy & Fuels, 2020, 34, 8676-8684.	2.5	38
18	Electrochemical Synthesis of Core–Shell Catalysts for Electrocatalytic Applications. ChemPhysChem, 2010, 11, 2854-2861.	1.0	37

XINGXING CHEN

#	Article	IF	CITATIONS
19	Rh–RhSxnanoparticles grafted on functionalized carbon nanotubes as catalyst for the oxygenreduction reaction. Journal of Materials Chemistry, 2010, 20, 736-742.	6.7	37
20	Synthesis of an improved hierarchical carbon-fiber composite as a catalyst support for platinum and its application in electrocatalysis. Carbon, 2012, 50, 4534-4542.	5.4	34
21	Amino acid-assisted synthesis of Fe2O3/nitrogen doped graphene hydrogels as high performance electrode material. Electrochimica Acta, 2018, 283, 1858-1870.	2.6	33
22	Earth-abundant coal-derived carbon nanotube/carbon composites as efficient bifunctional oxygen electrocatalysts for rechargeable zinc-air batteries. Journal of Energy Chemistry, 2021, 56, 87-97.	7.1	32
23	Characterisation of bifunctional electrocatalysts for oxygen reduction and evolution by means of SECM. Journal of Solid State Electrochemistry, 2016, 20, 1019-1027.	1.2	30
24	Local visualization of catalytic activity at gas evolving electrodes using frequency-dependent scanning electrochemical microscopy. Chemical Communications, 2014, 50, 13250-13253.	2.2	27
25	Trace metals dramatically boost oxygen electrocatalysis of N-doped coal-derived carbon for zinc–air batteries. Nanoscale, 2020, 12, 9628-9639.	2.8	24
26	Significant enhancement of the oxygen reduction activity of self-heteroatom doped coal derived carbon through oxidative pretreatment. Electrochimica Acta, 2019, 312, 22-30.	2.6	21
27	Versatile carboxylate-directed structures of ten 1D → 3D Ni(<scp>ii</scp>) coordination polymers: fluorescence behaviors and electrochemical activities. CrystEngComm, 2019, 21, 5344-5355.	1.3	20
28	Electrochemical performance of porous carbons derived from needle coke with different textures for supercapacitor electrode materials. Carbon Letters, 2021, 31, 57-65.	3.3	20
29	Patterned CNT Arrays for the Evaluation of Oxygen Reduction Activity by SECM. ChemPhysChem, 2010, 11, 74-78.	1.0	18
30	Traditional earth-abundant coal as new energy materials to catalyze the oxygen reduction reaction in alkaline solution. Electrochimica Acta, 2016, 211, 568-575.	2.6	18
31	Simple conversion of earth-abundant coal to high-performance bifunctional catalysts for reversible oxygen electrodes. Catalysis Science and Technology, 2018, 8, 1104-1112.	2.1	18
32	On the role of the thermal treatment of sulfided Rh/CNT catalysts applied in the oxygen reduction reaction. Electrochimica Acta, 2009, 54, 7186-7193.	2.6	17
33	Co-Mn Hybrid Oxides Supported on N-Doped Graphene as Efficient Electrocatalysts for Reversible Oxygen Electrodes. Journal of the Electrochemical Society, 2018, 165, H580-H589.	1.3	17
34	Microwave-Assisted Synthesis of Co/CoO _x Supported on Earth-Abundant Coal-Derived Carbon for Electrocatalysis of Oxygen Evolution. Journal of the Electrochemical Society, 2019, 166, F479-F486.	1.3	17
35	Insulation board-derived N/O self-doped porous carbon as an electrode material for high-performance symmetric supercapacitors. New Journal of Chemistry, 2021, 45, 17503-17512.	1.4	16
36	Using Cavity Microelectrodes for Electrochemical Noise Studies of Oxygenâ€Evolving Catalysts. ChemSusChem, 2015, 8, 560-566.	3.6	15

XINGXING CHEN

#	Article	IF	CITATIONS
37	Treatment of landfill leachate membrane filtration concentrate by synergistic effect of electrocatalysis and electro-Fenton. Journal of Water Process Engineering, 2020, 37, 101458.	2.6	15
38	Free-standing hierarchical Co@CoO/CNFs/Cu-foam composite based on electrochemical deposition as high-performance supercapacitor electrode. Journal of Alloys and Compounds, 2021, 856, 158075.	2.8	14
39	Bifunctional oxygen electrocatalysis at Co-B,N,S-graphene composite investigated by scanning electrochemical microscopy at variable temperatures and its application in Zn-air battery. Electrochimica Acta, 2021, 389, 138751.	2.6	14
40	Ethylenediamine-anchored gold nanoparticles on multi-walled carbon nanotubes: Synthesis and characterization. Electrochemistry Communications, 2010, 12, 939-943.	2.3	13
41	Atomic Cu dispersed ZIF-8 derived N-doped carbon for high-performance oxygen electrocatalysis in Zn-air battery. JPhys Materials, 2021, 4, 024006.	1.8	12
42	Cellobiose dehydrogenase entrapped within specifically designed Os-complex modified electrodeposition polymers as potential anodes for biofuel cells. Electrochimica Acta, 2014, 128, 318-325.	2.6	10
43	Optimization of Osâ€Complex Modified Redox Polymers for Improving Biocatalysis of PQQâ€sGDH Based Electrodes. Electroanalysis, 2015, 27, 200-208.	1.5	9
44	Photocatalytic one-step synthesis of Ag nanoparticles without reducing agent and their catalytic redox performance supported on carbon. Journal of Energy Chemistry, 2019, 36, 37-46.	7.1	9
45	Modulation of Photogenerated Carrier Transport by Integration of Sb ₂ O ₃ with Fe ₂ O ₃ for Improved Photoelectrochemical Water Oxidation. ACS Applied Energy Materials, 2022, 5, 8844-8851.	2.5	9
46	Scanning mass spectrometry with integrated constant distance positioning. Review of Scientific Instruments, 2006, 77, 084102.	0.6	8
47	Calibrating SECCM measurements by means of a nanoelectrode ruler. The intrinsic oxygen reduction activity of PtNi catalyst nanoparticles. Nano Research, 2022, 15, 1564-1569.	5.8	8
48	Simultaneously tuning charge separation and surface reaction in Fe2O3 photoanode for enhanced photoelectrochemical water oxidation. ChemElectroChem, 0, , .	1.7	3
49	Free-standing Co/Zn sulfide supported on Cu-foam for efficient overall water splitting. New Journal of Chemistry, 2022, 46, 11149-11157.	1.4	3
50	PQQ-sGDH Bioelectrodes Based on Os-Complex Modified Electrodeposition Polymers and Carbon Nanotubes. Journal of the Electrochemical Society, 2014, 161, H3058-H3063.	1.3	2
51	Directional pyrolytic growth of microscale carbon fibers on electrochemically pretreated polyacrylonitrile-based carbon microfibers. Mikrochimica Acta, 2008, 161, 95-100.	2.5	1
52	Elektrokatalyse in Brennstoffzellen und Elektrolyseuren: Kohlenstoffâ€Nanoröhrenâ€basierte Katalysatoren und neuartige Untersuchungsmethoden. Chemie-Ingenieur-Technik, 2009, 81, 581-589.	0.4	1