Jesse M Engreitz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5150117/publications.pdf

Version: 2024-02-01

38 papers

10,456 citations

201385 27 h-index 276539 41 g-index

56 all docs 56
docs citations

56 times ranked 19102 citing authors

#	Article	IF	CITATIONS
1	Local regulation of gene expression by IncRNA promoters, transcription and splicing. Nature, 2016, 539, 452-455.	13.7	1,056
2	The Xist IncRNA Exploits Three-Dimensional Genome Architecture to Spread Across the X Chromosome. Science, 2013, 341, 1237973.	6.0	846
3	The Lin28/let-7 Axis Regulates Glucose Metabolism. Cell, 2011, 147, 81-94.	13.5	812
4	Transcriptome-wide Mapping Reveals Widespread Dynamic-Regulated Pseudouridylation of ncRNA and mRNA. Cell, 2014, 159, 148-162.	13.5	770
5	Activity-by-contact model of enhancer–promoter regulation from thousands of CRISPR perturbations. Nature Genetics, 2019, 51, 1664-1669.	9.4	631
6	Topological organization of multichromosomal regions by the long intergenic noncoding RNA Firre. Nature Structural and Molecular Biology, 2014, 21, 198-206.	3.6	565
7	COVID-19 tissue atlases reveal SARS-CoV-2 pathology and cellular targets. Nature, 2021, 595, 107-113.	13.7	537
8	Systematic mapping of functional enhancer–promoter connections with CRISPR interference. Science, 2016, 354, 769-773.	6.0	512
9	Long non-coding RNAs: spatial amplifiers that control nuclear structure and gene expression. Nature Reviews Molecular Cell Biology, 2016, 17, 756-770.	16.1	510
10	Eradication of large established tumors in mice by combination immunotherapy that engages innate and adaptive immune responses. Nature Medicine, 2016, 22, 1402-1410.	15.2	437
11	RNA-RNA Interactions Enable Specific Targeting of Noncoding RNAs to Nascent Pre-mRNAs and Chromatin Sites. Cell, 2014, 159, 188-199.	13.5	425
12	Inherited causes of clonal haematopoiesis in 97,691 whole genomes. Nature, 2020, 586, 763-768.	13.7	376
13	A Genetic Variant Associated with Five Vascular Diseases Is a Distal Regulator of Endothelin-1 Gene Expression. Cell, 2017, 170, 522-533.e15.	13.5	356
14	Genome-scale activation screen identifies a lncRNA locus regulating a gene neighbourhood. Nature, 2017, 548, 343-346.	13.7	336
15	Genome-wide enhancer maps link risk variants to disease genes. Nature, 2021, 593, 238-243.	13.7	332
16	The NORAD lncRNA assembles a topoisomerase complex critical for genome stability. Nature, 2018, 561, 132-136.	13.7	303
17	Ribosome Levels Selectively Regulate Translation and Lineage Commitment in Human Hematopoiesis. Cell, 2018, 173, 90-103.e19.	13.5	296
18	Recurrent and functional regulatory mutations in breast cancer. Nature, 2017, 547, 55-60.	13.7	269

#	Article	IF	Citations
19	Systematic dissection of genomic features determining transcription factor binding and enhancer function. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1291-E1300.	3.3	150
20	Deep-coverage whole genome sequences and blood lipids among 16,324 individuals. Nature Communications, 2018, 9, 3391.	5.8	140
21	Deep coverage whole genome sequences and plasma lipoprotein(a) in individuals of European and African ancestries. Nature Communications, 2018, 9, 2606.	5.8	79
22	Positional specificity of different transcription factor classes within enhancers. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E7222-E7230.	3.3	72
23	Compatibility rules of human enhancer and promoter sequences. Nature, 2022, 607, 176-184.	13.7	67
24	Combining SNP-to-gene linking strategies to identify disease genes and assess disease omnigenicity. Nature Genetics, 2022, 54, 827-836.	9.4	61
25	ProfileChaser: searching microarray repositories based on genome-wide patterns of differential expression. Bioinformatics, 2011, 27, 3317-3318.	1.8	47
26	Prioritizing disease and trait causal variants at the TNFAIP3 locus using functional and genomic features. Nature Communications, 2020, 11, 1237.	5.8	38
27	Content-based microarray search using differential expression profiles. BMC Bioinformatics, 2010, 11 , 603 .	1.2	36
28	CRISPR-SURF: discovering regulatory elements by deconvolution of CRISPR tiling screen data. Nature Methods, 2018, 15, 992-993.	9.0	33
29	Activity-dependent regulome of human GABAergic neurons reveals new patterns of gene regulation and neurological disease heritability. Nature Neuroscience, 2021, 24, 437-448.	7.1	33
30	Neuregulin Autocrine Signaling Promotes Self-Renewal of Breast Tumor-Initiating Cells by Triggering HER2/HER3 Activation. Cancer Research, 2014, 74, 341-352.	0.4	30
31	CRISPR Tools for Systematic Studies of RNA Regulation. Cold Spring Harbor Perspectives in Biology, 2019, 11, a035386.	2.3	22
32	HyPR-seq: Single-cell quantification of chosen RNAs via hybridization and sequencing of DNA probes. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 33404-33413.	3.3	21
33	SNP-to-gene linking strategies reveal contributions of enhancer-related and candidate master-regulator genes to autoimmune disease. Cell Genomics, 2022, 2, 100145.	3.0	19
34	Functional disease architectures reveal unique biological role of transposable elements. Nature Communications, 2019, 10, 4054.	5.8	14
35	Gene-centric functional dissection of human genetic variation uncovers regulators of hematopoiesis. ELife, 2019, 8, .	2.8	14
36	Discovering metabolic disease gene interactions by correlated effects on cellular morphology. Molecular Metabolism, 2019, 24, 108-119.	3.0	13

#	#	Article	IF	CITATIONS
3	37	Computational estimates of annular diameter reveal genetic determinants of mitral valve function and disease. JCI Insight, 2022, 7, .	2.3	9
3	38	Systematic identification of genomic elements that regulate <i>FCGR2A </i> expression and harbor variants linked with autoimmune disease. Human Molecular Genetics, 2022, 31, 1946-1961.	1.4	7