Carrie L Lucas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5150072/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Studying severe long COVID to understand post-infectious disorders beyond COVID-19. Nature Medicine, 2022, 28, 879-882.	30.7	72
2	The role of PI3KÎ ³ in the immune system: new insights and translational implications. Nature Reviews Immunology, 2022, 22, 687-700.	22.7	22
3	Uncontrolled Epstein-Barr Virus as an Atypical Presentation of Deficiency in ADA2 (DADA2). Journal of Clinical Immunology, 2021, 41, 680-683.	3.8	7
4	SARS-CoV-2–related MIS-C: A key to the viral and genetic causes of Kawasaki disease?. Journal of Experimental Medicine, 2021, 218, .	8.5	100
5	Immune dysregulation and autoreactivity correlate with disease severity in SARS-CoV-2-associated multisystem inflammatory syndrome in children. Immunity, 2021, 54, 1083-1095.e7.	14.3	164
6	Human autoinflammatory disease reveals ELF4 as a transcriptional regulator of inflammation. Nature Immunology, 2021, 22, 1118-1126.	14.5	30
7	Hematopoietic Cell Transplantation Cures Adenosine Deaminase 2 Deficiency: Report on 30 Patients. Journal of Clinical Immunology, 2021, 41, 1633-1647.	3.8	43
8	Infections in activated PI3K delta syndrome (APDS). Current Opinion in Immunology, 2021, 72, 146-157.	5.5	11
9	Maximizing insights from monogenic immune disorders. Current Opinion in Immunology, 2021, 73, 50-57.	5.5	2
10	The receptor for advanced glycation endproducts (RAGE) modulates T cell signaling. PLoS ONE, 2020, 15, e0236921.	2.5	13
11	The Mystery of MIS-C Post-SARS-CoV-2 Infection. Trends in Microbiology, 2020, 28, 956-958.	7.7	26
12	Editorial: Human Disorders of PI3K Biology. Frontiers in Immunology, 2020, 11, 617464.	4.8	3
13	A Global Effort to Define the Human Genetics of Protective Immunity to SARS-CoV-2 Infection. Cell, 2020, 181, 1194-1199.	28.9	185
14	Novel compound heterozygous variants in NHLRC2 in a patient with FINCA syndrome. Journal of Human Genetics, 2020, 65, 911-915.	2.3	11
15	Germline biallelic PIK3CG mutations in a multifaceted immunodeficiency with immune dysregulation. Haematologica, 2020, 105, e488.	3.5	17
16	The receptor for advanced glycation endproducts (RAGE) modulates T cell signaling. , 2020, 15, e0236921.		0
17	The receptor for advanced glycation endproducts (RAGE) modulates T cell signaling. , 2020, 15, e0236921.		0
18	The receptor for advanced glycation endproducts (RAGE) modulates T cell signaling. , 2020, 15, e0236921.		0

CARRIE L LUCAS

#	Article	IF	CITATIONS
19	The receptor for advanced glycation endproducts (RAGE) modulates T cell signaling. , 2020, 15, e0236921.		0
20	The receptor for advanced glycation endproducts (RAGE) modulates T cell signaling. , 2020, 15, e0236921.		0
21	The receptor for advanced glycation endproducts (RAGE) modulates T cell signaling. , 2020, 15, e0236921.		0
22	Human PI3KÎ ³ deficiency and its microbiota-dependent mouse model reveal immunodeficiency and tissue immunopathology. Nature Communications, 2019, 10, 4364.	12.8	51
23	Conformational disruption of PI3Kδ regulation by immunodeficiency mutations in <i>PIK3CD</i> and <i>PIK3R1</i> . Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 1982-1987.	7.1	92
24	Novel PIK3CD mutations affecting N-terminal residues of p110δ cause activated PI3Kδ syndrome (APDS) in humans. Journal of Allergy and Clinical Immunology, 2017, 140, 1152-1156.e10.	2.9	62
25	Effective "activated PI3Kδ syndromeâ€â€"targeted therapy with the PI3Kδ inhibitor leniolisib. Blood, 2017, 130, 2307-2316.	1.4	227
26	Epstein–Barr Virus Susceptibility in Activated PI3Kδ Syndrome (APDS) Immunodeficiency. Frontiers in Immunology, 2017, 8, 2005.	4.8	33
27	PI3Kδ and primary immunodeficiencies. Nature Reviews Immunology, 2016, 16, 702-714.	22.7	259
28	Clinical and immunologic phenotype associated with activated phosphoinositide 3-kinase l´ syndrome 2: AÂcohort study. Journal of Allergy and Clinical Immunology, 2016, 138, 210-218.e9.	2.9	215
29	Genomics of Immune Diseases and New Therapies. Annual Review of Immunology, 2016, 34, 121-149.	21.8	47
30	Identifying genetic determinants of autoimmunity and immune dysregulation. Current Opinion in Immunology, 2015, 37, 28-33.	5.5	10
31	Heterozygous splice mutation in <i>PIK3R1</i> causes human immunodeficiency with lymphoproliferation due to dominant activation of PI3K. Journal of Experimental Medicine, 2014, 211, 2537-2547.	8.5	249
32	Dominant-activating germline mutations in the gene encoding the PI(3)K catalytic subunit p110δ result in T cell senescence and human immunodeficiency. Nature Immunology, 2014, 15, 88-97.	14.5	575
33	Molecular Basis of Cell Death Programs in Mature T Cell Homeostasis. , 2014, , 41-59.		0
34	Mg ²⁺ Regulates Cytotoxic Functions of NK and CD8 T Cells in Chronic EBV Infection Through NKG2D. Science, 2013, 341, 186-191.	12.6	269
35	Expression and purification of soluble murine CD40L monomers and polymers in yeast Pichia pastoris. Protein Expression and Purification, 2011, 76, 115-120.	1.3	6
36	LAG-3, TGF-β, and cell-intrinsic PD-1 inhibitory pathways contribute to CD8 but not CD4 T-cell tolerance induced by allogeneic BMT with anti-CD40L. Blood, 2011, 117, 5532-5540.	1.4	38

#	Article	IF	CITATIONS
37	Antibodies against insulin measured by electrochemiluminescence predicts insulitis severity and disease onset in non-obese diabetic mice and can distinguish human type 1 diabetes status. Journal of Translational Medicine, 2011, 9, 203.	4.4	22
38	Layers of regulation in induction of mixed chimerism by anti-CD40L. Chimerism, 2011, 2, 111-113.	0.7	2
39	A CD8 T cell–intrinsic role for the calcineurin-NFAT pathway for tolerance induction in vivo. Blood, 2010, 115, 1280-1287.	1.4	40