Hajnalka Szentgyörgyi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5149924/publications.pdf

Version: 2024-02-01

33 papers

5,127 citations

430843 18 h-index 32 g-index

34 all docs

34 docs citations

times ranked

34

5259 citing authors

#	Article	IF	CITATIONS
1	<scp>CropPol</scp> : A dynamic, open and global database on crop pollination. Ecology, 2022, 103, e3614.	3.2	19
2	Antioxidant Capacity Determination of Hungarian-, Slovak-, and Polish-Origin Goldenrod Honeys. Plants, 2022, 11, 792.	3.5	4
3	Pathways for Novel Epidemiology: Plant–Pollinator–Pathogen Networks and Global Change. Trends in Ecology and Evolution, 2021, 36, 623-636.	8.7	41
4	Usefulness of bee bread and capped brood for the assessment of monocyclic aromatic hydrocarbon levels in the environment. Environmental Pollution, 2020, 265, 114882.	7.5	3
5	A critical analysis of the potential for EU Common Agricultural Policy measures to support wild pollinators on farmland. Journal of Applied Ecology, 2020, 57, 681-694.	4.0	77
6	Body mass but not wing size or symmetry correlates with life span of honey bee drones. Bulletin of Entomological Research, 2019, 109, 383-389.	1.0	7
7	Honey bees are larger and live longer after developing at low temperature. Journal of Thermal Biology, 2018, 78, 219-226.	2.5	10
8	Predation Cues in Solitary bee Nests. Journal of Insect Behavior, 2017, 30, 385-393.	0.7	6
9	Forewing structure of the solitary bee Osmia bicornis developing on heavy metal pollution gradient. Ecotoxicology, 2017, 26, 1031-1040.	2.4	30
10	The thermal environment of the nest affects body and cell size in the solitary red mason bee (Osmia) Tj ETQq0 0	0 rgBT /0	verlock 10 Tf ! 25
11	The Effects of Starvation of Honey Bee Larvae on Reproductive Quality and Wing Asymmetry of Honey Bee Drones. Journal of Apicultural Science, 2017, 61, 233-243.	0.4	6
12	Orientation Inside Linear Nests by Male and Female Osmia bicornis (Megachilidae). Journal of Insect Science, 2017, 17, .	1.5	2
13	Influence of pollen deprivation on the fore wing asymmetry of honeybee workers and drones. Apidologie, 2016, 47, 653-662.	2.0	18
14	Non-bee insects are important contributors to global crop pollination. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 146-151.	7.1	618
15	Contribution of insect pollinators to crop yield and quality varies with agricultural intensification. PeerJ, 2014, 2, e328.	2.0	183
16	Survival, reproduction and population growth of the bee pollinator, <i>Osmia rufa</i> (Hymenoptera:) Tj ETQq0 113-121.	0 0 rgBT /0 3.0	Overlock 10 T 50
17	Cocoon orientation in the nests of red mason bees (Osmia bicornis) is affected by cocoon size and available space. Apidologie, 2013, 44, 334-341.	2.0	11
18	Combined effects of global change pressures on animal-mediated pollination. Trends in Ecology and Evolution, 2013, 28, 524-530.	8.7	320

#	Article	IF	CITATIONS
19	Wild Pollinators Enhance Fruit Set of Crops Regardless of Honey Bee Abundance. Science, 2013, 339, 1608-1611.	12.6	1,767
20	Abundance and diversity of wild bees along gradients of heavy metal pollution. Journal of Applied Ecology, 2012, 49, 118-125.	4.0	81
21	Mite species inhabiting commercial bumblebee (Bombus terrestris) nests in Polish greenhouses. Experimental and Applied Acarology, 2012, 56, 271-282.	1.6	21
22	Stability of pollination services decreases with isolation from natural areas despite honey bee visits. Ecology Letters, 2011, 14, 1062-1072.	6.4	681
23	Greenhouse bumblebees (Bombus terrestris) spread their genes into the wild. Conservation Genetics, 2011, 12, 187-192.	1.5	49
24	Assessing bee species richness in two Mediterranean communities: importance of habitat type and sampling techniques. Ecological Research, 2011, 26, 969-983.	1.5	135
25	Establishment of a cross-European field site network in the ALARM project for assessing large-scale changes in biodiversity. Environmental Monitoring and Assessment, 2010, 164, 337-348.	2.7	10
26	Landscape context and habitat type as drivers of bee diversity in European annual crops. Agriculture, Ecosystems and Environment, 2009, 133, 40-47.	5.3	134
27	Wild pollinator communities are negatively affected by invasion of alien goldenrods in grassland landscapes. Biological Conservation, 2009, 142, 1322-1332.	4.1	170
28	Diversity of wild bees in wet meadows: Implications for conservation. Wetlands, 2008, 28, 975-983.	1.5	42
29	Ultrasonic calls of bank vole pups isolated and exposed to cold or to nest odor. Physiology and Behavior, 2008, 93, 296-303.	2.1	23
30	MEASURING BEE DIVERSITY IN DIFFERENT EUROPEAN HABITATS AND BIOGEOGRAPHICAL REGIONS. Ecological Monographs, 2008, 78, 653-671.	5.4	562
31	VOCALIZATION OF TWO PALAEARCTIC SPECIES OF HAMSTER: EVERSMANN HAMSTER EVERSMANNI (i) AND GREY HAMSTER (i) CRICETULUS MIGRATORIOS (i). Bioacoustics, 2006, 15, 315-330.	1.7	11
32	Ultrasonic responses of CBA pups to the odour of genetically different mice. Behaviour, 2004, 141, 157-167.	0.8	9
33	Genetic Differences in Odor Discrimination by Newborn Mice as Expressed by Ultrasonic Calls., 2001,, 241-247.		1