Antonella DallaCort

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5149783/publications.pdf

Version: 2024-02-01

84 papers 2,364 citations

28 h-index 233338 45 g-index

92 all docs 92 docs citations 92 times ranked 2281 citing authors

#	Article	IF	CITATIONS
1	Excited state dynamics of Zn–salophen complexes. Photochemical and Photobiological Sciences, 2022, 21, 923-934.	1.6	1
2	Clickâ€Connected 2â€(Hydroxyimino)aldehydes for the Design of UVâ€Responsive Functional Molecules. European Journal of Organic Chemistry, 2021, 2021, 289-294.	1.2	2
3	A Newly Designed Water Soluble Uranylâ€6alophen Complex for Anion Recognition. ChemistryOpen, 2021, 10, 848-851.	0.9	1
4	A Simple and Efficient Mechanochemical Route for the Synthesis of Salophen Ligands and of the Corresponding Zn, Ni, and Pd Complexes. Molecules, 2019, 24, 2314.	1.7	15
5	Synthesis of potential HIV integrase inhibitors inspired by natural polyphenol structures. Natural Product Research, 2018, 32, 1893-1901.	1.0	3
6	MicroRNAs delivery into human cells grown on 3D-printed PLA scaffolds coated with a novel fluorescent PAMAM dendrimer for biomedical applications. Scientific Reports, 2018, 8, 13888.	1.6	22
7	The Supramolecular Attitude of Metal–Salophen and Metal–Salen Complexes. Inorganics, 2018, 6, 42.	1.2	29
8	Adenosine monophosphate recognition by zinc–salophen complexes: IRMPD spectroscopy and quantum modeling study. Journal of Molecular Spectroscopy, 2017, 335, 108-116.	0.4	12
9	Experimental and Computational Investigation of Salophen–Zn Gas Phase Complexes with Cations: A Source of Possible Interference in Anionic Recognition. Journal of Physical Chemistry A, 2017, 121, 7042-7050.	1.1	1
10	Novel uranyl(VI) complexes incorporating ethynyl groups as potential halide chemosensors: an experimental and computational approach. Supramolecular Chemistry, 2017, 29, 922-927.	1.5	3
11	Multitopic Receptors. , 2017, , 417-435.		O
12	Colorimetric and fluorescence "turn-on―recognition of fluoride by a maleonitrile-based uranyl salen-complex. Dyes and Pigments, 2016, 135, 94-101.	2.0	20
13	Solution and Solidâ€State Studies on the Halide Binding Affinity of Perfluorophenylâ€Armed Uranyl–Salophen Receptors Enhanced by Anion–π Interactions. Chemistry - A European Journal, 2016, 22, 18714-18717.	1.7	14
14	Rational design of a supramolecular gel based on a Zn(<scp>ii</scp>)–salophen bis-dipeptide derivative. RSC Advances, 2016, 6, 57306-57309.	1.7	19
15	Ternary assemblies comprising metal–salophen complexes and 4,4′-bipyridine. New Journal of Chemistry, 2016, 40, 5714-5721.	1.4	6
16	Anion selectivity of Zn–salophen receptors: Influence of ligand substituents. Inorganica Chimica Acta, 2015, 434, 1-6.	1.2	12
17	Fluoride binding in water with the use of micellar nanodevices based on salophen complexes. Organic and Biomolecular Chemistry, 2015, 13, 2437-2443.	1.5	14
18	Unexpected Emission Properties of a 1,8â€Naphthalimide Unit Covalently Appended to a Zn–Salophen. European Journal of Inorganic Chemistry, 2015, 2015, 2664-2670.	1.0	8

#	Article	IF	CITATIONS
19	Editorial: Supramolecular chemistry in water. Organic and Biomolecular Chemistry, 2015, 13, 2499-2500.	1.5	29
20	Anion Recognition by Uranyl–Salophen Derivatives as Probed by Infrared Multiple Photon Dissociation Spectroscopy and Ab Initio Modeling. Chemistry - A European Journal, 2014, 20, 11783-11792.	1.7	13
21	Orthohalogen substituents dramatically enhance hydrogen bonding of aromatic ureas in solution. Chemical Communications, 2014, 50, 611-613.	2.2	18
22	A Route to Oligosaccharide-Appended Salicylaldehydes: Useful Building Blocks for the Synthesis of Metal–Salophen Complexes. Journal of Organic Chemistry, 2013, 78, 7962-7969.	1.7	9
23	Paramagnetic Relaxation Enhancement Experiments: A Valuable Tool for the Characterization of Micellar Nanodevices. Journal of Physical Chemistry B, 2013, 117, 11654-11659.	1.2	9
24	Substituent Effects on the Biological Properties of Zn-Salophen Complexes. Inorganic Chemistry, 2013, 52, 9245-9253.	1.9	50
25	Luminescent zinc salophen derivatives: cytotoxicity assessment and action mechanism studies. New Journal of Chemistry, 2013, 37, 1046.	1.4	31
26	Synthesis and photochemical behaviour of novel uranyl–salophen complexes bearing anthracenyl side arms. Supramolecular Chemistry, 2013, 25, 109-115.	1.5	5
27	Molecular aggregation of novel Zn(II)-salophenpyridyl derivatives. Supramolecular Chemistry, 2013, 25, 709-717.	1.5	7
28	Ion-Pair Recognition by Metal - Salophen and Metal - Salen Complexes. Australian Journal of Chemistry, 2012, 65, 1638.	0.5	20
29	Kinetics of demetallation of a zinc–salophen complex into liposomes. Biochimica Et Biophysica Acta - Biomembranes, 2012, 1818, 747-752.	1.4	14
30	Monitoring Fluoride Binding in DMSO: Why is a Singular Binding Behavior Observed?. European Journal of Organic Chemistry, 2012, 2012, 3570-3574.	1.2	19
31	Substituent effects in cation–l̃€ interactions. Recognition of tetramethylammonium chloride by uranyl-salophen receptors. Chemical Science, 2012, 3, 2119.	3.7	12
32	Anion Recognition in Water with Use of a Neutral Uranyl-salophen Receptor. Journal of Organic Chemistry, 2011, 76, 7569-7572.	1.7	54
33	Metal–salophen-based receptors for anions. Chemical Society Reviews, 2010, 39, 3863.	18.7	133
34	A new water soluble Znâ€salophen derivative as a receptor for αâ€aminoacids: Unexpected chiral discrimination. Chirality, 2009, 21, 104-109.	1.3	32
35	Specific Supramolecular Interactions between Zn ²⁺ -Salophen Complexes and Biologically Relevant Anions. Inorganic Chemistry, 2009, 48, 6229-6235.	1.9	85
36	Fluoride Binding in Water: A New Environment for a Known Receptor. ChemPhysChem, 2008, 9, 2168-2171.	1.0	29

#	Article	IF	CITATIONS
37	Enantiomerization of Chiral Uranylâ^'Salophen Complexes via Unprecedented Ligand Hemilability: Toward Configurationally Stable Derivatives. Journal of Organic Chemistry, 2008, 73, 6108-6118.	1.7	26
38	Specific recognition of fluoride anion using a metallamacrocycle incorporating a uranyl-salen unit. New Journal of Chemistry, 2008, 32, 1113.	1.4	41
39	The Role of Attractive van der Waals Forces in the Catalysis of Michael Addition by a Phenyl Decorated Uranyl-Salophen Complex. Journal of Organic Chemistry, 2008, 73, 9439-9442.	1.7	19
40	A Kinetic Study of the Conjugate Addition of Benzenethiol to Cyclic Enones Catalyzed by a Nonsymmetrical Uranylâ^'Salophen Complex. Journal of Organic Chemistry, 2007, 72, 5383-5386.	1.7	16
41	Nonsymmetrically Substituted Uranyl-Salophen Receptors: New Opportunities for Molecular Recognition and Catalysis. Supramolecular Chemistry, 2007, 19, 79-87.	1.5	26
42	Evidence of the Facile Hydride and Enolate Addition to the Imine Bond of an Aluminumâ [°] Salophen Complex. Inorganic Chemistry, 2007, 46, 9057-9059.	1.9	19
43	Fluoride-responsive organogelator based on oxalamide-derived anthraquinone. Chemical Communications, 2007, , 3535.	2.2	107
44	Ion Pair Recognition of Quaternary Ammonium and Iminium Salts by Uranylâ^'Salophen Compounds in Solution and in the Solid State. Journal of the American Chemical Society, 2007, 129, 3641-3648.	6.6	97
45	Specific sensing of poly G by the aluminum–salophen complex. Journal of Inorganic Biochemistry, 2007, 101, 1129-1132.	1.5	5
46	Zincâ€"salophen complexes as selective receptors for tertiary amines. New Journal of Chemistry, 2007, 31, 1633.	1.4	88
47	A novel ditopic zinc-salophen macrocycle: a potential two-stationed wheel for [2]-pseudorotaxanes. Organic and Biomolecular Chemistry, 2006, 4, 4543.	1.5	24
48	Crystal Structure of a CsFâ^'Uranylâ^'Salen Complex. An Unusual Cesiumâ^'Chlorine Coordination. Inorganic Chemistry, 2006, 45, 6099-6101.	1.9	29
49	Stereomutations of Atropisomers of Sterically Hindered Salophen Ligands ChemInform, 2006, 37, no.	0.1	0
50	Ion-Pairing Effects in the Self-Assembly of a Fluorescent Pseudorotaxane. European Journal of Organic Chemistry, 2006, 2006, 105-112.	1.2	38
51	Recognition of Alkali Metal Halide Contact Ion Pairs by Uranylâ^'Salophen Receptors Bearing Aromatic Sidearms. The Role of Cationâ^'Ï€ Interactions. Journal of the American Chemical Society, 2005, 127, 3831-3837.	6.6	141
52	Exclusive transition state stabilization in the supramolecular catalysis of Diels–Alder reaction by a uranyl salophen complex. Chemical Communications, 2005, , 3867.	2.2	24
53	Inherently Chiral Uranyl-Salophen Macrocycles:Â Computer-Aided Design and Resolution. Journal of Organic Chemistry, 2005, 70, 9814-9821.	1.7	18
54	Stereomutations of Atropisomers of Sterically Hindered Salophen Ligands. Journal of Organic Chemistry, 2005, 70, 8877-8883.	1.7	50

#	Article	IF	Citations
55	Evaluation of Chiral Recognition Ability of a Novel Uranyl–Salophen-Based Receptor: An Easy and Rapid Testing Protocol. Chemistry - A European Journal, 2004, 10, 3301-3307.	1.7	23
56	Aromatic Bridged Bis-phenol A Derived Cyclophanes. Synthesis, Molecular Structure and Binding Properties Toward Quats. Supramolecular Chemistry, 2004, 16, 59-66.	1.5	2
57	Isolation and Epimerization Kinetics of the First Diastereoisomer of an Inherently Chiral Uranylâ^'Salophen Complex. Organic Letters, 2004, 6, 1697-1700.	2.4	11
58	"Inherent chirality―and curvature. New Journal of Chemistry, 2004, 28, 1198-1199.	1.4	114
59	New Insight into the Mechanism of the Conjugate Addition of Benzenethiol to Cyclic and Acyclic Enones and of the Corresponding Uranylâ 'Salophen-Catalysed Version. European Journal of Organic Chemistry, 2003, 2003, 627-633.	1.2	31
60	Uranyl-salophen based ditopic receptors for the recognition of quaternary ammonium halides. Chemical Communications, 2003, , 2420.	2.2	45
61	Unprecedented detection of inherent chirality in uranyl–salophen complexes. Chemical Communications, 2003, , 2178-2179.	2.2	32
62	Molecular Recognition of Carbonyl Compounds by Uranyl-salophen Based Neutral Receptors Driven by Van Der Waals Forces. Supramolecular Chemistry, 2002, 14, 211-219.	1.5	31
63	Chiral anion-mediated asymmetric induction onto chiral diquats. Tetrahedron Letters, 2002, 43, 423-426.	0.7	28
64	Counteranion Effect on Complexation of Quats by a Neutral Calix[5] arene Receptor. Journal of Organic Chemistry, 2001, 66, 1900-1902.	1.7	72
65	Polyether-bridged cyclophanes incorporating bisphenol A units as neutral receptors for quats: synthesis, molecular structure and binding properties. Journal of Physical Organic Chemistry, 2001, 14, 425-431.	0.9	8
66	Bis-phenol A Cyclophanes: Synthesis, Crystal Structures and Binding Studies. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2001, 39, 229-234.	1.6	2
67	Experimental and Computational Study of Complexes Between Quats and Naphthalenophanes. Supramolecular Chemistry, 2001, 13, 313-323.	1.5	1
68	Catalysis of the Addition of Benzenethiol to 2-Cyclohexen-1-ones by Uranyl-Salophen Complexes: A Catalytic Metallocleft with High Substrate Specificity. Chemistry - A European Journal, 2000, 6, 1193-1198.	1.7	14
69	Catalysis of the Addition of Benzenethiol to 2-Cyclohexen-1-ones by Uranyl-Salophen Complexes: A Catalytic Metallocleft with High Substrate Specificity. Chemistry - A European Journal, 2000, 6, 1193-1198.	1.7	26
70	CALIXARENES AS HOSTS FOR QUATS. , 2000, , 85-110.		7
71	Rates and Equilibria of the Michael-Type Addition of Benzenethiol to 2-Cyclopenten-1-ones. Journal of Organic Chemistry, 1999, 64, 8122-8126.	1.7	26
72	Supramolecular Catalysis of 1,4-Thiol Addition by Salophenâ^'Uranyl Complexes. Journal of the American Chemical Society, 1998, 120, 12688-12689.	6.6	36

#	Article	IF	CITATIONS
73	Cation-Ï€ interactions between neutral calix[5]arene hosts and cationic organic guests. Tetrahedron, 1997, 53, 4901-4908.	1.0	84
74	Cyclophanes as Neutral Receptors for Quaternary Ammonium and Iminium Cations in Chloroform Solution. Journal of Organic Chemistry, 1995, 60, 8313-8314.	1.7	27
75	Macrocyclization under Kinetic Control. A Theoretical Study and Its Application to the Synthesis of Macrocyclic Poly(thiolactones). Journal of the American Chemical Society, 1994, 116, 7081-7087.	6.6	35
76	Effective molarities from distributions of cyclic oligomers in the synthesis of polythiolactones. Journal of the Chemical Society Chemical Communications, 1993, , 538.	2.0	10
77	Group 14 organometallic reagents. 11. Macrocyclic polylactones by catalyzed cyclooligomerization. Tetra[(S)betabutyrolactone]. Journal of Organic Chemistry, 1992, 57, 1472-1476.	1.7	18
78	Group 14 organometallic reagents. 12. An improved procedure for the synthesis of macrocyclic poly(thialactones). The dramatic effect of reactant mixing. Journal of Organic Chemistry, 1992, 57, 766-768.	1.7	21
79	Reaction of enol silyl ethers and enol acetates with copper(II) nitrate-iodine: synthesis of .alphaiodo ketones. Journal of Organic Chemistry, 1991, 56, 6708-6709.	1.7	36
80	A Simple and Convenient Method for Cleavage of Silyl Esthers. Synthetic Communications, 1990, 20, 757-760.	1.1	36
81	Selective One-Pot Oxidation of Methylarenes to Benzyl Alcohols with the Copper(II)-Peroxydisulfate System. Synthetic Communications, 1988, 18, 613-616.	1.1	13
82	Substituent effects on intramolecular selectivity and free energy relationships in anodic and metal-ion oxidations of 5-substituted 1,2,3-trimethylbenzenes. Journal of Organic Chemistry, 1986, 51, 4544-4548.	1.7	31
83	Ring-closure reactions. 21. Intramolecular .betaelimination competing with ring formation from o-(.omegabromoalkoxy)phenoxides over a wide range of ring sizes. Journal of Organic Chemistry, 1983, 48, 3979-3982.	1.7	8
84	Ring-closure reactions. 17. The kinetics of formation of meta- and paracyclophane diethers. Journal of Organic Chemistry, 1980, 45, 3923-3925.	1.7	9