
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5149612/publications.pdf Version: 2024-02-01

IAN IEZEK

#	Article	IF	CITATIONS
1	Raman spectroscopy—a tool for rapid differentiation among microbes causing urinary tract infections. Analytica Chimica Acta, 2022, 1191, 339292.	2.6	17
2	The Impact of Mitochondrial Fission-Stimulated ROS Production on Pro-Apoptotic Chemotherapy. Biology, 2021, 10, 33.	1.3	22
3	Stochastic dynamics of optically bound matter levitated in vacuum. Optica, 2021, 8, 220.	4.8	24
4	Raman Microspectroscopic Analysis of Selenium Bioaccumulation by Green Alga Chlorella vulgaris. Biosensors, 2021, 11, 115.	2.3	3
5	Optically bound matter levitated in vacuum. , 2021, , .		0
6	Optically Transportable Optofluidic Microlasers with Liquid Crystal Cavities Tuned by the Electric Field. ACS Applied Materials & Interfaces, 2021, 13, 50657-50667.	4.0	4
7	Controlled Oil/Water Partitioning of Hydrophobic Substrates Extending the Bioanalytical Applications of Droplet-Based Microfluidics. Analytical Chemistry, 2019, 91, 10008-10015.	3.2	20
8	Identification of ability to form biofilm in <i>Candida parapsilosis</i> and <i>Staphylococcus epidermidis</i> by Raman spectroscopy. Future Microbiology, 2019, 14, 509-517.	1.0	16
9	Wavelength-Dependent Optical Force Aggregation of Gold Nanorods for SERS in a Microfluidic Chip. Journal of Physical Chemistry C, 2019, 123, 5608-5615.	1.5	38
10	Surface-enhanced Raman Spectroscopy in Microfluidic Chips for Directed Evolution of Enzymes and Environmental Monitoring. , 2019, , .		0
11	Tunable Soft-Matter Optofluidic Waveguides Assembled by Light. ACS Photonics, 2019, 6, 403-410.	3.2	16
12	Cyclin C: The Story of a Non-Cycling Cyclin. Biology, 2019, 8, 3.	1.3	28
13	Multimode fiber transmission matrix obtained with internal references. , 2019, , .		1
14	Analysis of microorganisms, chlorinated hydrocarbons and hyaluronic acid gel using Raman based optofluidic techniques and SERS. , 2019, , .		0
15	Enhancement of the â€~tractor-beam' pulling force on an optically bound structure. Light: Science and Applications, 2018, 7, 17135-17135.	7.7	29
16	Detection of Chloroalkanes by Surface-Enhanced Raman Spectroscopy in Microfluidic Chips. Sensors, 2018, 18, 3212.	2.1	6
17	Aglycemic HepG2 Cells Switch From Aminotransferase Glutaminolytic Pathway of Pyruvate Utilization to Complete Krebs Cycle at Hypoxia. Frontiers in Endocrinology, 2018, 9, 637.	1.5	11
18	Reactive Oxygen Species and Mitochondrial Dynamics: The Yin and Yang of Mitochondrial Dysfunction and Cancer Progression. Antioxidants, 2018, 7, 13.	2.2	325

#	Article	IF	CITATIONS
19	Microfluidic Cultivation and Laser Tweezers Raman Spectroscopy of E. coli under Antibiotic Stress. Sensors, 2018, 18, 1623.	2.1	34
20	Laser tweezers Raman spectroscopy of E. coli under antibiotic stress in microfluidic chips. , 2018, , .		1
21	Motion of optically bound particles in tractor beam. , 2018, , .		0
22	Measurement system for characterization of angular and spectral distribution of LED-based sources. , 2018, , .		0
23	Surface-enhanced Raman spectroscopy of chloroalkanes in microfluidic chips. , 2018, , .		0
24	Rapid identification of staphylococci by Raman spectroscopy. Scientific Reports, 2017, 7, 14846.	1.6	57
25	Differentiation between <i>Staphylococcus aureus</i> and <i>Staphylococcus epidermidis</i> strains using Raman spectroscopy. Future Microbiology, 2017, 12, 881-890.	1.0	19
26	Effects of Infrared Optical Trapping on Saccharomyces cerevisiae in a Microfluidic System. Sensors, 2017, 17, 2640.	2.1	30
27	Thermal tuning of spectral emission from optically trapped liquid-crystal droplet resonators. Journal of the Optical Society of America B: Optical Physics, 2017, 34, 1855.	0.9	13
28	Optically Trapped Droplets of Liquid Crystals as Flexible, Tunable Optofluidic Microcavities. , 2017, , .		0
29	Quantitative Raman Spectroscopy Analysis of Polyhydroxyalkanoates Produced by Cupriavidus necator H16. Sensors, 2016, 16, 1808.	2.1	24
30	Temperature-induced tuning of emission spectra of liquid-crystal optical microcavities. Proceedings of SPIE, 2016, , .	0.8	0
31	Raman spectroscopy to monitor the effects of temperature regime and medium composition on micro-organism growth. Proceedings of SPIE, 2016, , .	0.8	0
32	Two-photon photopolymerization with multiple laser beams. Proceedings of SPIE, 2016, , .	0.8	0
33	Directed evolution of enzymes using microfluidic chips. , 2016, , .		0
34	Direct measurement of the temperature profile close to an optically trapped absorbing particle. Optics Letters, 2016, 41, 870.	1.7	13
35	Influence of Culture Media on Microbial Fingerprints Using Raman Spectroscopy. Sensors, 2015, 15, 29635-29647.	2.1	32
36	Identification of individual biofilm-forming bacterial cells using Raman tweezers. Journal of Biomedical Optics, 2015, 20, 051038.	1.4	16

#	Article	IF	CITATIONS
37	H ₂ O ₂ -Activated Mitochondrial Phospholipase iPLA ₂ γ Prevents Lipotoxic Oxidative Stress in Synergy with UCP2, Amplifies Signaling <i>via</i> G-Protein–Coupled Receptor GPR40, and Regulates Insulin Secretion in Pancreatic β-Cells. Antioxidants and Redox Signaling, 2015, 23, 958-972.	2.5	45
38	Time-resolved study of microorganisms by Raman spectroscopy. Proceedings of SPIE, 2015, , .	0.8	0
39	Aglycemia keeps mitochondrial oxidative phosphorylation under hypoxic conditions in HepG2 cells. Journal of Bioenergetics and Biomembranes, 2015, 47, 467-476.	1.0	18
40	Raman-Tweezers Optofluidic System for Automatic Analysis and Sorting of Living Cells. , 2015, , .		0
41	Time-resolved study of microorganisms by Raman spectroscopy. , 2015, , .		0
42	Candida parapsilosis Biofilm Identification by Raman Spectroscopy. International Journal of Molecular Sciences, 2014, 15, 23924-23935.	1.8	43
43	Tunable WGM resonators from optically trapped dye doped liquid crystal emulsion droplets. , 2014, , .		2
44	Monitoring the influence of antibiotic exposure using Raman spectroscopy. Proceedings of SPIE, 2014,	0.8	0
45	Anomalous behavior of a three-dimensional, optically trapped, super-paramagnetic particle. , 2014, , .		0
46	Raman tweezers on bacteria: following the mechanisms of bacteriostatic versus bactericidal action. , 2014, , .		1
47	Reproducible and time-course study of yeast biofilm by Raman spectroscopy. Proceedings of SPIE, 2014, ,	0.8	0
48	Raman tweezers in microfluidic systems for analysis and sorting of living cells. , 2014, , .		3
49	Droplet resonator based optofluidic microlasers. , 2014, , .		2
50	Raman tweezers in microfluidic systems for analysis and sorting of living cells. , 2014, , .		0
51	Liquid crystal emulsion micro-droplet WGM resonators. Proceedings of SPIE, 2014, , .	0.8	0
52	Optical trapping of microalgae at 735–1064 nm: Photodamage assessment. Journal of Photochemistry and Photobiology B: Biology, 2013, 121, 27-31.	1.7	40
53	Spectral tuning of lasing emission from optofluidic droplet microlasers using optical stretching. Optics Express, 2013, 21, 21380.	1.7	27
54	Tunable optofluidic microlasers based on optically stretched emulsion droplets. , 2013, , .		0

#	Article	IF	CITATIONS
55	Optical manipulation of aerosol droplets using a holographic dual and single beam trap. Optics Letters, 2013, 38, 4601.	1.7	22
56	Following the Mechanisms of Bacteriostatic versus Bactericidal Action Using Raman Spectroscopy. Molecules, 2013, 18, 13188-13199.	1.7	78
57	Raman spectroscopy for bacterial identification and characterization. Proceedings of SPIE, 2012, , .	0.8	1
58	Microfluidic systems for optical sorting. , 2012, , .		2
59	Application of laser-induced breakdown spectroscopy to the analysis of algal biomass for industrial biotechnology. Spectrochimica Acta, Part B: Atomic Spectroscopy, 2012, 74-75, 169-176.	1.5	26
60	Raman microspectroscopy of algal lipid bodies: β-carotene quantification. Journal of Applied Phycology, 2012, 24, 541-546.	1.5	44
61	Characterization of microorganisms using Raman tweezers. Proceedings of SPIE, 2011, , .	0.8	3
62	Raman microspectroscopy of algal lipid bodies: β-carotene as a volume sensor. Proceedings of SPIE, 2011, , .	0.8	7
63	Raman microspectroscopy based sensor of algal lipid unsaturation. Proceedings of SPIE, 2011, , .	0.8	0
64	Narrow-selection bandwith of femtosecond laser comb with application to changes in optical path distance. , 2010, , .		0
65	Precise monitoring of ultra low expansion Fabry-Perot cavity length by the use of a stabilized optical frequency comb. , 2010, , .		3
66	Monitor of mirror distance of Fabry-Perot cavity by the use of stabilized femtosecond laser comb. Proceedings of SPIE, 2010, , .	0.8	3
67	Active sorting switch for biological objects. , 2010, , .		2
68	Precise measurement of the length by means of DFB diode and femtosecond laser. Proceedings of SPIE, 2009, , .	0.8	0
69	Raman microspectroscopy of optically trapped micro- and nanoobjects. Proceedings of SPIE, 2008, , .	0.8	3
70	Axial optical trap stiffness influenced by retro-reflected beam. Journal of Optics, 2007, 9, S251-S255.	1.5	10
71	<title>Manufacturing of extremely narrow polymer fibers by non-diffracting beams</title> . , 2007, , .		2
72	Formation of long and thin polymer fiber using nondiffracting beam. Optics Express, 2006, 14, 8506.	1.7	44

#	Article	IF	CITATIONS
73	<title>Optical tracking of micro-objects within living cells</title> . , 2006, 6180, 466.		О
74	Narrow polymer fibers obtained as a combination of photopolymerization and non-diffracting beams. , 2006, , .		0
75	Combination of photopolymerization and optical micromanipulation techniques. , 2005, , .		0
76	How the size of a particle approaching dielectric interface influences its behavior. , 2004, , .		1
77	Theoretical comparison of optical traps created by standing wave and single beam. Optics Communications, 2003, 220, 401-412.	1.0	84
78	Spatial structure of chromatin in hybrid cells produced by laser-induced fusion studied by optical microscopy. , 2003, 5036, 630.		0
79	Sequence anatomy of mitochondrial anion carriers. FEBS Letters, 2003, 534, 15-25.	1.3	27
80	Behaviour of an optically trapped probe approaching a dielectric interface. Journal of Modern Optics, 2003, 50, 1615-1625.	0.6	23
81	Employment of laser-induced fusion of living cells for the study of spatial structure of chromatin. , 2003, , .		Ο
82	The use of an optically trapped microprobe for scanning details of surface. , 2003, 5259, 166.		1
83	Influence of weak reflections from dielectric interfaces on properties of optical trap. , 2003, , .		1
84	Behaviour of an optically trapped probe approaching a dielectric interface. Journal of Modern Optics, 2003, 50, 1615-1625.	0.6	2
85	<title>Use of a microprobe held by a laser beam for the study of surface reliefs</title> ., 2002, , .		Ο
86	<title>Behavior of nanoparticle and microparticle in the standing wave trap</title> . , 2001, , .		2
87	Combined system for optical cutting and multiple-beam optical trapping. , 1999, 4016, 303.		Ο

6