List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5149463/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Rescue of SARS-CoV-2 from a Single Bacterial Artificial Chromosome. MBio, 2020, 11, .	4.1	94
2	Identification of Inhibitors of ZIKV Replication. Viruses, 2020, 12, 1041.	3.3	17
3	In vivo rescue of recombinant Zika virus from an infectious cDNA clone and its implications in vaccine development. Scientific Reports, 2020, 10, 512.	3.3	14
4	Rescue of Recombinant Zika Virus from a Bacterial Artificial Chromosome cDNA Clone. Journal of Visualized Experiments, 2019, , .	0.3	20
5	New Advances on Zika Virus Research. Viruses, 2019, 11, 258.	3.3	4
6	Potent Inhibition of Zika Virus Replication by Aurintricarboxylic Acid. Frontiers in Microbiology, 2019, 10, 718.	3.5	22
7	A natural polymorphism in Zika virus NS2A protein responsible of virulence in mice. Scientific Reports, 2019, 9, 19968.	3.3	23
8	Mitochondrial levels determine variability in cell death by modulating apoptotic gene expression. Nature Communications, 2018, 9, 389.	12.8	98
9	Reverse Genetic Approaches for the Generation of Recombinant Zika Virus. Viruses, 2018, 10, 597.	3.3	23
10	An Alanine-to-Valine Substitution in the Residue 175 of Zika Virus NS2A Protein Affects Viral RNA Synthesis and Attenuates the Virus In Vivo. Viruses, 2018, 10, 547.	3.3	32
11	Role of transcription regulatory sequence in regulation of gene expression and replication of porcine reproductive and respiratory syndrome virus. Veterinary Research, 2017, 48, 41.	3.0	9
12	Generation of a DNA-Launched Reporter Replicon Based on Dengue Virus Type 2 as a Multipurpose Platform. Intervirology, 2016, 59, 275-282.	2.8	3
13	Continuous and Discontinuous RNA Synthesis in Coronaviruses. Annual Review of Virology, 2015, 2, 265-288.	6.7	525
14	Identification of a Gamma Interferon-Activated Inhibitor of Translation-Like RNA Motif at the 3′ End of the Transmissible Gastroenteritis Coronavirus Genome Modulating Innate Immune Response. MBio, 2015, 6, e00105.	4.1	19
15	Engineering Infectious cDNAs of Coronavirus as Bacterial Artificial Chromosomes. Methods in Molecular Biology, 2015, 1282, 135-152.	0.9	20
16	Reprint of: Coronavirus reverse genetic systems: Infectious clones and replicons. Virus Research, 2014, 194, 67-75.	2.2	5
17	Development of a novel DNA-launched dengue virus type 2 infectious clone assembled in a bacterial artificial chromosome. Virus Research, 2014, 180, 12-22.	2.2	29
18	Coronavirus reverse genetic systems: Infectious clones and replicons. Virus Research, 2014, 189, 262-270.	2.2	100

#	Article	IF	CITATIONS
19	Engineering a Replication-Competent, Propagation-Defective Middle East Respiratory Syndrome Coronavirus as a Vaccine Candidate. MBio, 2013, 4, e00650-13.	4.1	236
20	Cytoplasmic RNA viruses as potential vehicles for the delivery of therapeutic small RNAs. Virology Journal, 2013, 10, 185.	3.4	30
21	A novel porcine reproductive and respiratory syndrome virus vector system that stably expresses enhanced green fluorescent protein as a separate transcription unit. Veterinary Research, 2013, 44, 104.	3.0	60
22	Molecular Characterization of Feline Infectious Peritonitis Virus Strain DF-2 and Studies of the Role of ORF3abc in Viral Cell Tropism. Journal of Virology, 2012, 86, 6258-6267.	3.4	51
23	Transmissible Gastroenteritis Coronavirus RNA-Dependent RNA Polymerase and Nonstructural Proteins 2, 3, and 8 Are Incorporated into Viral Particles. Journal of Virology, 2012, 86, 1261-1266.	3.4	13
24	Immunogenic characterization and epitope mapping of transmissible gastroenteritis virus RNA dependent RNA polymerase. Journal of Virological Methods, 2011, 175, 7-13.	2.1	7
25	Interference of ribosomal frameshifting by antisense peptide nucleic acids suppresses SARS coronavirus replication. Antiviral Research, 2011, 91, 1-10.	4.1	88
26	The Polypyrimidine Tract-Binding Protein Affects Coronavirus RNA Accumulation Levels and Relocalizes Viral RNAs to Novel Cytoplasmic Domains Different from Replication-Transcription Sites. Journal of Virology, 2011, 85, 5136-5149.	3.4	68
27	RNA-RNA and RNA-protein interactions in coronavirus replication and transcription. RNA Biology, 2011, 8, 237-248.	3.1	116
28	Molecular characterization of a Chinese vaccine strain of transmissible gastroenteritis virus: mutations that may contribute to attenuation. Virus Genes, 2010, 40, 403-409.	1.6	10
29	Rapid differentiation of vaccine strain and Chinese field strains of transmissible gastroenteritis virus by restriction fragment length polymorphism of the N gene. Virus Genes, 2010, 41, 47-58.	1.6	5
30	Host cell proteins interacting with the 3′ end of TGEV coronavirus genome influence virus replication. Virology, 2009, 391, 304-314.	2.4	63
31	Cene expression, virulence and vaccine development in coronaviruses. Journal of Biotechnology, 2008, 136, S212-S213.	3.8	0
32	Engineering Infectious cDNAs of Coronavirus as Bacterial Artificial Chromosomes. Methods in Molecular Biology, 2008, 454, 275-291.	0.9	27
33	A Severe Acute Respiratory Syndrome Coronavirus That Lacks the E Gene Is Attenuated In Vitro and In Vivo. Journal of Virology, 2007, 81, 1701-1713.	3.4	354
34	Biochemical Aspects of Coronavirus Replication. Advances in Experimental Medicine and Biology, 2006, 581, 13-24.	1.6	6
35	Biochemical Aspects of Coronavirus Replication and Virus-Host Interaction. Annual Review of Microbiology, 2006, 60, 211-230.	7.3	187
36	Recovery of a Neurovirulent Human Coronavirus OC43 from an Infectious cDNA Clone. Journal of Virology, 2006, 80, 3670-3674.	3.4	77

#	Article	IF	CITATIONS
37	Construction of a Severe Acute Respiratory Syndrome Coronavirus Infectious cDNA Clone and a Replicon To Study Coronavirus RNA Synthesis. Journal of Virology, 2006, 80, 10900-10906.	3.4	198
38	Identification of Essential Genes as a Strategy to Select a Sars Candidate Vaccine Using a SARS-CoV Infectious cDNA. Advances in Experimental Medicine and Biology, 2006, , 579-583.	1.6	5
39	Differential role of N-Terminal Polyprotein Processing in Coronavirus Genome Replication and Minigenome Amplification. Advances in Experimental Medicine and Biology, 2006, 581, 79-83.	1.6	Ο
40	Identification of essential genes as a strategy to select a SARS candidate vaccine using a SARS-CoV infectious cDNA. Advances in Experimental Medicine and Biology, 2006, 581, 579-83.	1.6	5
41	A Point Mutation within the Replicase Gene Differentially Affects Coronavirus Genome versus Minigenome Replication. Journal of Virology, 2005, 79, 15016-15026.	3.4	17
42	The Nucleoprotein Is Required for Efficient Coronavirus Genome Replication. Journal of Virology, 2004, 78, 12683-12688.	3.4	190
43	Transmissible gastroenteritis coronavirus gene 7 is not essential but influences in vivo virus replication and virulence. Virology, 2003, 308, 13-22.	2.4	97
44	Virus-based vectors for gene expression in mammalian cells: Coronavirus. New Comprehensive Biochemistry, 2003, 38, 151-168.	0.1	6
45	Stabilization of a Full-Length Infectious cDNA Clone of Transmissible Gastroenteritis Coronavirus by Insertion of an Intron. Journal of Virology, 2002, 76, 4655-4661.	3.4	66
46	Coronavirus derived expression systems. Journal of Biotechnology, 2001, 88, 183-204.	3.8	40
47	Complete genome sequence of transmissible gastroenteritis coronavirus PUR46-MAD clone and evolution of the purdue virus cluster. Virus Genes, 2001, 23, 105-118.	1.6	74
48	The Vaccinia Virus Superoxide Dismutase-Like Protein (A45R) Is a Virion Component That Is Nonessential for Virus Replication. Journal of Virology, 2001, 75, 7018-7029.	3.4	52
49	Cloning Of A Transmissible Gastroenteritis Coronavirus Full-Length cDNA. Advances in Experimental Medicine and Biology, 2001, 494, 533-536.	1.6	5
50	Coronavirus Derived Expression Systems. Advances in Experimental Medicine and Biology, 2001, 494, 309-321.	1.6	3
51	A Strategy for the Generation of an Infectious Transmissible Gastroenteritis Coronavirus from Cloned cDNA. Advances in Experimental Medicine and Biology, 2001, 494, 261-266.	1.6	0
52	African Swine Fever Virus EP153R Open Reading Frame Encodes a Glycoprotein Involved in the Hemadsorption of Infected Cells. Virology, 2000, 266, 340-351.	2.4	68
53	Engineering the largest RNA virus genome as an infectious bacterial artificial chromosome. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 5516-5521.	7.1	320
54	Induction of aggregation in porcine lymphoid cells by antibodies to CD46. Veterinary Immunology and Immunopathology, 2000, 73, 73-81.	1.2	3

#	Article	IF	CITATIONS
55	Inducible Gene Expression from African Swine Fever Virus Recombinants: Analysis of the Major Capsid Protein p72. Journal of Virology, 1998, 72, 3185-3195.	3.4	74
56	Cloning of the gp63 surface protease of Leishmania infantum. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 1997, 1361, 92-102.	3.8	13
57	The African Swine Fever Virus IAP Homolog Is a Late Structural Polypeptide. Virology, 1995, 214, 670-674.	2.4	80
58	A set of African swine fever virus tandem repeats shares similarities with SAR-like sequences. Journal of General Virology, 1995, 76, 729-740.	2.9	7
59	Vectors for the genetic manipulation of African swine fever virus. Journal of Biotechnology, 1995, 40, 121-131.	3.8	32
60	Transcriptional mapping of a late gene coding for the p12 attachment protein of African swine fever virus. Journal of Virology, 1993, 67, 553-556.	3.4	46
61	African swine fever virus encodes a CD2 homolog responsible for the adhesion of erythrocytes to infected cells. Journal of Virology, 1993, 67, 5312-5320.	3.4	142
62	Genetic manipulation of African swine fever virus: Construction of recombinant viruses expressing the β-galactosidase gene. Virology, 1992, 188, 67-76.	2.4	52
63	Transcriptional analysis of multigene family 110 of African swine fever virus. Journal of Virology, 1992, 66, 6655-6667.	3.4	76
64	Multigene families in African swine fever virus: family 110. Journal of Virology, 1990, 64, 2064-2072.	3.4	85
65	Multigene families in African swine fever virus: family 360. Journal of Virology, 1990, 64, 2073-2081.	3.4	55
66	Genetic variation of african swine fever virus: Variable regions near the ends of the viral DNA. Virology, 1989, 173, 251-257.	2.4	73