Michel Vert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5148692/publications.pdf Version: 2024-02-01

MICHEL VEDT

#	Article	IF	CITATIONS
1	Terminology for biorelated polymers and applications (IUPAC Recommendations 2012). Pure and Applied Chemistry, 2012, 84, 377-410.	0.9	784
2	Aliphatic Polyesters: Great Degradable Polymers That Cannot Do Everythingâ€. Biomacromolecules, 2005, 6, 538-546.	2.6	500
3	Polymeric biomaterials: Strategies of the past vs. strategies of the future. Progress in Polymer Science, 2007, 32, 755-761.	11.8	137
4	Degradable and bioresorbable polymers in surgery and in pharmacology: beliefs and facts. Journal of Materials Science: Materials in Medicine, 2009, 20, 437-446.	1.7	115
5	Versatile UCST-based thermoresponsive hydrogels for loco-regional sustained drug delivery. Journal of Controlled Release, 2014, 174, 1-6.	4.8	105
6	Stannous octoate-versus zinc-initiated polymerization of racemic lactide. Polymer Bulletin, 1994, 32, 617-623.	1.7	91
7	Crystalline oligomeric stereocomplex as an intermediate compound in racemic poly(DL-lactic acid) degradation. Polymer International, 1994, 33, 37-41.	1.6	69
8	Poly(ethylene glycol): Protein-repulsive or albumin-compatible?. Journal of Biomaterials Science, Polymer Edition, 2000, 11, 1307-1317.	1.9	67
9	Chemical routes to poly(β-malic acid) and potential applications of this water-soluble bioresorbable poly(β-hydroxy alkanoate). Polymer Degradation and Stability, 1998, 59, 169-175.	2.7	63
10	Biodegradation of Aliphatic Polyesters. , 2002, , 71-131.		53
11	Degradable polymers in a living environment: where do you end up?. Polymer International, 2002, 51, 840-844.	1.6	51
12	After soft tissues, bone, drug delivery and packaging, PLA aims at blood. European Polymer Journal, 2015, 68, 516-525.	2.6	41
13	Novel Amphiphilic Degradable Poly(<i>ε</i> â€caprolactone)â€ <i>graft</i> â€poly(4â€vinyl pyridine), Poly(<i>ε</i> â€caprolactone)â€ <i>graft</i> â€poly(dimethylaminoethyl methacrylate) and Waterâ€Soluble Derivatives. Macromolecular Rapid Communications, 2008, 29, 743-750.	2.0	38
14	New functional polyamides derived from citric acid and Lâ€lysine: Synthesis and characterization. Makromolekulare Chemie Macromolecular Symposia, 1991, 47, 345-355.	0.6	34
15	Head-to-Head Comparison of a Drug-Free Early Programmed Dismantling Polylactic Acid Bioresorbable Scaffold and a Metallic Stent in the Porcine Coronary Artery. Circulation: Cardiovascular Interventions, 2014, 7, 70-79.	1.4	24
16	Partially quaternized poly(tertiary amine) as pH-dependent drug carrier for solubilization and temporary trapping of lipophilic drugs in aqueous media. Journal of Controlled Release, 1985, 1, 217-224.	4.8	23
17	Degradable Polymers in Medicine: Updating Strategies and Terminology. International Journal of Artificial Organs, 2011, 34, 76-83.	0.7	23
18	Bioabsorbable polymers in medicine: an overview. EuroIntervention, 2009, 5, F9-F14.	1.4	23

MICHEL VERT

#	Article	IF	CITATIONS
19	PLA stereocopolymers as sources of bioresorbable stents: Preliminary investigation in rabbit. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2006, 77B, 349-356.	1.6	22
20	Peptideâ^'Poly(<scp>l</scp> -lysine citramide) Conjugates and their In Vitro Anti-HIV Behavior. Biomacromolecules, 2009, 10, 865-876.	2.6	22
21	Partial Methylation of Poly[thio-1-(N,N-dimethylaminomethyl)ethylene] and Conformational Behavior of Resulting Dibasic Polyelectrolytes. Polymer Journal, 1980, 12, 113-124.	1.3	21
22	Not Any New Functional Polymer Can Be for Medicine: What About Artificial Biopolymers?. Macromolecular Bioscience, 2011, 11, 1653-1661.	2.1	21
23	Enlarging the library of poly-(L-lysine citramide) polyelectrolytic drug carriers. Journal of Polymer Science Part A, 2001, 39, 3475-3484.	2.5	17
24	Bioresorbable polyelectrolyte amphiphiles as nanosized carriers for lipophilic drug solubilization and delivery. Journal of Biomaterials Science, Polymer Edition, 2007, 18, 287-301.	1.9	16
25	Title is missing!. Die Makromolekulare Chemie Rapid Communications, 1984, 5, 187-190.	1.1	15
26	Comparison of a Drugâ€Free Early Programmed Dismantling PDLLA Bioresorbable Scaffold and a Metallic Stent in a Porcine Coronary Artery Model at 3â€Year Followâ€Up. Journal of the American Heart Association, 2017, 6, .	1.6	14
27	Poly(?-caprolactone)-Based Organogels and Hydrogels with Poly(ethylene glycol) Cross-Linkings. Macromolecular Rapid Communications, 2004, 25, 1865-1869.	2.0	12
28	Abbreviations of polymer names and guidelines for abbreviating polymer names (IUPAC) Tj ETQq0 0 0 rgBT /Ove	rlock 10 T	f 50 382 Td (I 12
29	Nomenclature and terminology for linear lactic acid-based polymers (IUPAC Recommendations 2019). Pure and Applied Chemistry, 2020, 92, 193-211.	0.9	11
30	Biopolymers and Artificial Biopolymers in Biomedical Applications, an Overview. , 2001, , 63-79.		9
31	Extracting information on the surface monomer unit distribution of PLGA by ToFâ€SIMS. Surface and Interface Analysis, 2008, 40, 1168-1175.	0.8	7
32	The non-specific antiviral activity of polysulfates to fight SARS-CoV-2, its mutants and viruses with cationic spikes. Journal of Biomaterials Science, Polymer Edition, 2021, 32, 1466-1471.	1.9	7
33	Glycolide deuteriation by hydrogen isotope exchange using the HSCIE method. Journal of Labelled Compounds and Radiopharmaceuticals, 1999, 42, 1093-1101.	0.5	6
34	Fluorescence Verses Radioactivity Labeling for Lab-Scale Investigation of the Fate of Water-Soluble Polymers in Wastewater Treatment Plants. Journal of Polymers and the Environment, 2011, 19, 40-48.	2.4	6
35	New amoxicillin–poly(lactic acid)â€based conjugates: synthesis and <i>in vitro</i> release of amoxicillin. Polymer International, 2011, 60, 398-404.	1.6	6
36	Poly[(N-acryloyl glycinamide)-co-(N-acryloyl l-alaninamide)] and Their Ability to Form Thermo-Responsive Hydrogels for Sustained Drug Delivery. Gels, 2019, 5, 13.	2.1	6

MICHEL VERT

#	Article	IF	CITATIONS
37	Extrasulfation of Heparin: Effects on Chemical Structures and Anticoagulant Activity. Journal of Bioactive and Compatible Polymers, 1989, 4, 269-280.	0.8	5
38	A method to slow down the ionization-dependent release of risperidone loaded in a thermoresponsive poly(N-acryloyl glycinamide) hydrogel. Drug Delivery and Translational Research, 2017, 7, 460-464.	3.0	5
39	Nomenclature and graphic representations for chemically modified polymers (IUPAC) Tj ETQq1 1 0.784314 rgBT	/Oyerlock	104 Tf 50 66
40	Comparison between protein repulsions by diblock PLA-PEO and albumin nanocoatings using OWLS. Journal of Biomaterials Science, Polymer Edition, 2017, 28, 177-193.	1.9	4
41	Hyaluronic Acid-Poly(N-acryloyl glycinamide) Copolymers as Sources of Degradable Thermoresponsive Hydrogels for Therapy. Gels, 2020, 6, 42.	2.1	4
42	Chiroptical Properties of Optically Active (â^')Poly [Nâ€(secâ€Butyl)â€Nâ€Methyl Acrylamide] with Regard to Amide Chromophores. Israel Journal of Chemistry, 1976, 15, 39-45.	1.0	3
43	Behavior of human cells in contact with a poly(d,l-lactic acid) porous matrix after calcification using phosphatidylserine. Journal of Bioactive and Compatible Polymers, 2012, 27, 375-387.	0.8	3
44	Degradation of polymeric systems aimed at temporary therapeutic applications: Structure-related complications. E-Polymers, 2005, 5, .	1.3	2
45	Prebiotic macromolecules and today's biomacromolecules in the light of polymerology. European Polymer Journal, 2018, 100, 25-36.	2.6	2
46	First approach on transfection ability of novel amphiphilic water soluble degradable poly(ε-caprolactone)-g-poly(Llysine) copolymers. E-Polymers, 2008, 8, .	1.3	1
47	First-in-Man trial of a drug-free bioresorbable stent designed to minimize the duration of coronary artery scaffolding. Journal of Biomaterials Science, Polymer Edition, 2021, 32, 1251-1266.	1.9	1
48	Lactic acid-based polymers in depth. , 2017, , 15-21.		1
49	Definitions and notations relating to tactic polymers (IUPAC Recommendations 2020). Pure and Applied Chemistry, 2020, 92, 1769-1779.	0.9	1
50	The clinical nanomedicine handbook. Journal of Biomaterials Science, Polymer Edition, 2014, 25,	1.9	0
51 _	Terminology and the naming of conjugates based on polymers or other substrates (IUPAC) Tj ETQq1 1 0.784314	rgBT /Ove	erlock 10 Tf

4