
## Wim E Hennink

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5148429/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | 25th Anniversary Article: Engineering Hydrogels for Biofabrication. Advanced Materials, 2013, 25, 5011-5028.                                                                                    | 21.0 | 1,522     |
| 2  | Novel crosslinking methods to design hydrogels. Advanced Drug Delivery Reviews, 2002, 54, 13-36.                                                                                                | 13.7 | 1,314     |
| 3  | Drug targeting to tumors: Principles, pitfalls and (pre-) clinical progress. Journal of Controlled<br>Release, 2012, 161, 175-187.                                                              | 9.9  | 1,131     |
| 4  | Reduction-sensitive polymers and bioconjugates for biomedical applications. Biomaterials, 2009, 30, 2180-2198.                                                                                  | 11.4 | 1,045     |
| 5  | Hydrogels for Protein Delivery. Chemical Reviews, 2012, 112, 2853-2888.                                                                                                                         | 47.7 | 962       |
| 6  | Cationic polymer based gene delivery systems. Pharmaceutical Research, 2000, 17, 113-126.                                                                                                       | 3.5  | 816       |
| 7  | Polymeric Micelles in Anticancer Therapy: Targeting, Imaging and Triggered Release. Pharmaceutical Research, 2010, 27, 2569-2589.                                                               | 3.5  | 791       |
| 8  | Theranostic Nanomedicine. Accounts of Chemical Research, 2011, 44, 1029-1038.                                                                                                                   | 15.6 | 765       |
| 9  | Hydrogels in a historical perspective: From simple networks to smart materials. Journal of<br>Controlled Release, 2014, 190, 254-273.                                                           | 9.9  | 732       |
| 10 | Curcumin nanoformulations: A review of pharmaceutical properties and preclinical studies and clinical studies and clinical data related to cancer treatment. Biomaterials, 2014, 35, 3365-3383. | 11.4 | 698       |
| 11 | Protein instability in poly(lactic-co-glycolic acid) microparticles. Pharmaceutical Research, 2000, 17, 1159-1167.                                                                              | 3.5  | 636       |
| 12 | Chitosan-based delivery systems for protein therapeutics and antigens. Advanced Drug Delivery Reviews, 2010, 62, 59-82.                                                                         | 13.7 | 564       |
| 13 | In situ gelling hydrogels for pharmaceutical and biomedical applications. International Journal of Pharmaceutics, 2008, 355, 1-18.                                                              | 5.2  | 538       |
| 14 | Cyclodextrin-Based Polymeric Materials: Synthesis, Properties, and Pharmaceutical/Biomedical<br>Applications. Biomacromolecules, 2009, 10, 3157-3175.                                           | 5.4  | 529       |
| 15 | Sheddable Coatings for Long-Circulating Nanoparticles. Pharmaceutical Research, 2008, 25, 55-71.                                                                                                | 3.5  | 510       |
| 16 | Tumour-targeted nanomedicines: principles and practice. British Journal of Cancer, 2008, 99, 392-397.                                                                                           | 6.4  | 478       |
| 17 | Biodegradable polymers as non-viral carriers for plasmid DNA delivery. Journal of Controlled Release,<br>2008, 126, 97-110.                                                                     | 9.9  | 451       |
| 18 | Interpenetrating Polymer Networks polysaccharide hydrogels for drug delivery and tissue<br>engineering. Advanced Drug Delivery Reviews, 2013, 65, 1172-1187.                                    | 13.7 | 450       |

3.6

266

| #  | Article                                                                                                                                                                              | IF         | CITATIONS   |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------|
| 19 | Triggered destabilisation of polymeric micelles and vesicles by changing polymers polarity: An attractive tool for drug delivery. Journal of Controlled Release, 2007, 120, 131-148. | 9.9        | 449         |
| 20 | Hydrogels as Extracellular Matrices for Skeletal Tissue Engineering: State-of-the-Art and Novel<br>Application in Organ Printing. Tissue Engineering, 2007, 13, 1905-1925.           | 4.6        | 420         |
| 21 | Core-crosslinked polymeric micelles: Principles, preparation, biomedical applications and clinical translation. Nano Today, 2015, 10, 93-117.                                        | 11.9       | 415         |
| 22 | Structureâ ''Activity Relationships of Water-Soluble Cationic Methacrylate/Methacrylamide Polymers<br>for Nonviral Gene Delivery. Bioconjugate Chemistry, 1999, 10, 589-597.         | 3.6        | 403         |
| 23 | Preparation and characterization of protein-loaded N-trimethyl chitosan nanoparticles as nasal delivery system. Journal of Controlled Release, 2006, 111, 107-116.                   | 9.9        | 375         |
| 24 | Functional aliphatic polyesters for biomedical and pharmaceutical applications. Journal of Controlled Release, 2011, 152, 168-176.                                                   | 9.9        | 370         |
| 25 | The effect of photopolymerization on stem cells embedded in hydrogels. Biomaterials, 2009, 30, 344-353.                                                                              | 11.4       | 364         |
| 26 | Synthesis, Characterization, and Polymerization of Glycidyl Methacrylate Derivatized Dextran.<br>Macromolecules, 1995, 28, 6317-6322.                                                | 4.8        | 357         |
| 27 | Hydrogels for Therapeutic Delivery: Current Developments and Future Directions.<br>Biomacromolecules, 2017, 18, 316-330.                                                             | 5.4        | 333         |
| 28 | Hydrogels for protein delivery in tissue engineering. Journal of Controlled Release, 2012, 161, 680-692.                                                                             | 9.9        | 309         |
| 29 | 2-(dimethylamino)ethyl methacrylate based (co)polymers as gene transfer agents. Journal of<br>Controlled Release, 1998, 53, 145-153.                                                 | 9.9        | 306         |
| 30 | Effect of size and serum proteins on transfection efficiency of poly ((2-dimethylamino)ethyl) Tj ETQq0 0 0 rgBT /                                                                    | Ovgrlock 1 | 0 Tf 50 302 |
| 31 | The Immunogenicity of Polyethylene Glycol: Facts and Fiction. Pharmaceutical Research, 2013, 30, 1729-1734.                                                                          | 3.5        | 302         |
| 32 | A Mechanistic Study of the Hydrolytic Stability of Poly(2-(dimethylamino)ethyl methacrylate).<br>Macromolecules, 1998, 31, 8063-8068.                                                | 4.8        | 295         |
| 33 | Thermosensitive and biodegradable polymeric micelles for paclitaxel delivery. Journal of Controlled Release, 2005, 103, 341-353.                                                     | 9.9        | 286         |
| 34 | Novel Bioreducible Poly(amido amine)s for Highly Efficient Gene Delivery. Bioconjugate Chemistry, 2007, 18, 138-145.                                                                 | 3.6        | 283         |
| 35 | Passive versus Active Tumor Targeting Using RGD- and NGR-Modified Polymeric Nanomedicines. Nano<br>Letters, 2014, 14, 972-981.                                                       | 9.1        | 272         |
|    |                                                                                                                                                                                      |            | _           |

36 Synthesis and Applications of Biomedical and Pharmaceutical Polymers via Click Chemistry Methodologies. Bioconjugate Chemistry, 2009, 20, 2001-2016.

| #  | Article                                                                                                                                               | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Hydrolysable core-crosslinked thermosensitive polymeric micelles: Synthesis, characterisation and in vivo studies. Biomaterials, 2007, 28, 5581-5593. | 11.4 | 262       |

## Relation between transfection efficiency and cytotoxicity of poly(2-(dimethylamino)ethyl) Tj ETQq0 0 0 rgBT /Overlock 10 Tf $50_{243}$ 702 Td $24_{3}$ 702 Td

| 39 | Core-crosslinked polymeric micelles with controlled release of covalently entrapped doxorubicin.<br>Biomaterials, 2010, 31, 7797-7804.                                                                                    | 11.4 | 241 |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| 40 | Polyurethane-based drug delivery systems. International Journal of Pharmaceutics, 2013, 450, 145-162.                                                                                                                     | 5.2  | 235 |
| 41 | Degradation and Release Behavior of Dextran-Based Hydrogels. Macromolecules, 1997, 30, 4639-4645.                                                                                                                         | 4.8  | 228 |
| 42 | Cellular Uptake of Cationic Polymer-DNA Complexes Via Caveolae Plays a Pivotal Role in Gene<br>Transfection in COS-7 Cells. Pharmaceutical Research, 2007, 24, 1590-1598.                                                 | 3.5  | 223 |
| 43 | Simultaneous delivery of doxorubicin and gemcitabine to tumors in vivo using prototypic polymeric drug carriers. Biomaterials, 2009, 30, 3466-3475.                                                                       | 11.4 | 219 |
| 44 | InÂvivo biocompatibility and biodegradation of 3D-printed porous scaffolds based on a<br>hydroxyl-functionalized poly(Îμ-caprolactone). Biomaterials, 2012, 33, 4309-4318.                                                | 11.4 | 217 |
| 45 | Strategies for encapsulation of small hydrophilic and amphiphilic drugs in PLGA microspheres:<br>State-of-the-art and challenges. International Journal of Pharmaceutics, 2016, 499, 358-367.                             | 5.2  | 207 |
| 46 | Novel Self-assembled Hydrogels by Stereocomplex Formation in Aqueous Solution of Enantiomeric<br>Lactic Acid Oligomers Grafted To Dextran. Macromolecules, 2000, 33, 3680-3686.                                           | 4.8  | 204 |
| 47 | Organ printing: the future of bone regeneration?. Trends in Biotechnology, 2011, 29, 601-606.                                                                                                                             | 9.3  | 195 |
| 48 | Physically crosslinked dextran hydrogels by stereocomplex formation of lactic acid oligomers: degradation and protein release behavior. Journal of Controlled Release, 2001, 71, 261-275.                                 | 9.9  | 193 |
| 49 | Synthesis, characterization and in vitro biological properties of O-methyl free N,N,N-trimethylated chitosan. Biomaterials, 2008, 29, 3642-3649.                                                                          | 11.4 | 193 |
| 50 | Degradable-Brushed pHEMA–pDMAEMA Synthesized via ATRP and Click Chemistry for Gene Delivery.<br>Bioconjugate Chemistry, 2007, 18, 2077-2084.                                                                              | 3.6  | 188 |
| 51 | Superparamagnetic Iron Oxide Nanoparticles Encapsulated in Biodegradable Thermosensitive<br>Polymeric Micelles: Toward a Targeted Nanomedicine Suitable for Image-Guided Drug Delivery.<br>Langmuir, 2009, 25, 2060-2067. | 3.5  | 187 |
| 52 | Micelles based on HPMA copolymersâ~†. Advanced Drug Delivery Reviews, 2010, 62, 231-239.                                                                                                                                  | 13.7 | 186 |
| 53 | Complete Regression of Xenograft Tumors upon Targeted Delivery of Paclitaxel <i>via</i> ΖΠStacking<br>Stabilized Polymeric Micelles. ACS Nano, 2015, 9, 3740-3752.                                                        | 14.6 | 185 |
| 54 | Self-gelling hydrogels based on oppositely charged dextran microspheres. Biomaterials, 2005, 26, 2129-2135.                                                                                                               | 11.4 | 184 |

Wim E Hennink

| #  | Article                                                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | ΖΠStacking Increases the Stability and Loading Capacity of Thermosensitive Polymeric Micelles for<br>Chemotherapeutic Drugs. Biomacromolecules, 2013, 14, 1826-1837.                                                                                         | 5.4  | 183       |
| 56 | Reaction of Dextran with Glycidyl Methacrylate:  An Unexpected Transesterification. Macromolecules,<br>1997, 30, 3411-3413.                                                                                                                                  | 4.8  | 181       |
| 57 | Linear poly(amido amine)s with secondary and tertiary amino groups and variable amounts of<br>disulfide linkages: Synthesis and in vitro gene transfer properties. Journal of Controlled Release,<br>2006, 116, 130-137.                                     | 9.9  | 175       |
| 58 | Comparison of five different targeting ligands to enhance accumulation of liposomes into the brain.<br>Journal of Controlled Release, 2011, 150, 30-36.                                                                                                      | 9.9  | 171       |
| 59 | Thermoresponsive Polymeric Micelles with Controlled Instability Based on Hydrolytically<br>SensitiveN-Isopropylacrylamide Copolymers. Macromolecules, 2001, 34, 7589-7591.                                                                                   | 4.8  | 167       |
| 60 | Effect of Particle Size on Drug Loading and Release Kinetics of Gefitinib-Loaded PLGA Microspheres.<br>Molecular Pharmaceutics, 2017, 14, 459-467.                                                                                                           | 4.6  | 159       |
| 61 | Monodisperse Enantiomeric Lactic Acid Oligomers:Â Preparation, Characterization, and Stereocomplex<br>Formation. Macromolecules, 1998, 31, 6397-6402.                                                                                                        | 4.8  | 158       |
| 62 | Bioreducible poly(amido amine)s with oligoamine side chains: Synthesis, characterization, and structural effects on gene delivery. Journal of Controlled Release, 2008, 126, 166-174.                                                                        | 9.9  | 156       |
| 63 | Low Molecular Weight Linear Polyethylenimine-b-poly(ethylene glycol)-b-polyethylenimine Triblock<br>Copolymers:Â Synthesis, Characterization, and in Vitro Gene Transfer Properties. Biomacromolecules,<br>2005, 6, 3440-3448.                               | 5.4  | 152       |
| 64 | The effect of the processing and formulation parameters on the size of nanoparticles based on block copolymers of poly(ethylene glycol) and poly(N-isopropylacrylamide) with and without hydrolytically sensitive groups. Biomaterials, 2004, 25, 2409-2418. | 11.4 | 147       |
| 65 | A Printable Photopolymerizable Thermosensitive p(HPMAmâ€lactate)â€PEG Hydrogel for Tissue<br>Engineering. Advanced Functional Materials, 2011, 21, 1833-1842.                                                                                                | 14.9 | 147       |
| 66 | Steric stabilization of poly(2-(dimethylamino)ethyl methacrylate)-based polyplexes mediates prolonged circulation and tumor targeting in mice. Journal of Gene Medicine, 2004, 6, 64-75.                                                                     | 2.8  | 146       |
| 67 | Photopolymerized thermosensitive hydrogels for tailorable diffusion-controlled protein delivery.<br>Journal of Controlled Release, 2009, 140, 230-236.                                                                                                       | 9.9  | 144       |
| 68 | A versatile family of degradable non-viral gene carriers based on hyperbranched poly(ester amine)s.<br>Journal of Controlled Release, 2005, 109, 317-329.                                                                                                    | 9.9  | 141       |
| 69 | Functionalized Poly(α-hydroxy acid)s via Ring-Opening Polymerization: Toward Hydrophilic Polyesters<br>with Pendant Hydroxyl Groups. Macromolecules, 2006, 39, 3500-3508.                                                                                    | 4.8  | 141       |
| 70 | In vivo biocompatibility of dextran-based hydrogels. , 2000, 50, 397-404.                                                                                                                                                                                    |      | 136       |
| 71 | Physicochemical Characterization of Degradable Thermosensitive Polymeric Micelles. Langmuir, 2004, 20, 9388-9395.                                                                                                                                            | 3.5  | 136       |
| 72 | Biomedical Applications of Self-Assembling Peptides. Bioconjugate Chemistry, 2016, 27, 3-18.                                                                                                                                                                 | 3.6  | 136       |

| #  | Article                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | The Nuclear Pore Complex: The Gateway to Successful Nonviral Gene Delivery. Pharmaceutical<br>Research, 2006, 23, 447-459.                                                                      | 3.5  | 135       |
| 74 | Self-Assembling Hydrogels Based on β-Cyclodextrin/Cholesterol Inclusion Complexes.<br>Macromolecules, 2008, 41, 1766-1773.                                                                      | 4.8  | 135       |
| 75 | Conjugation of ovalbumin to trimethyl chitosan improves immunogenicity of the antigen. Journal of<br>Controlled Release, 2010, 143, 207-214.                                                    | 9.9  | 134       |
| 76 | Nanomedicines for Inflammatory Arthritis: Head-to-Head Comparison of Glucocorticoid-Containing<br>Polymers, Micelles, and Liposomes. ACS Nano, 2014, 8, 458-466.                                | 14.6 | 133       |
| 77 | Clinical application of polymeric micelles for the treatment of cancer. Materials Chemistry Frontiers, 2017, 1, 1485-1501.                                                                      | 5.9  | 133       |
| 78 | Hydrolytic degradation of oligo(lactic acid): a kinetic and mechanistic study. Polymer, 2004, 45,<br>6779-6787.                                                                                 | 3.8  | 125       |
| 79 | Physicoâ€Chemical Strategies to Enhance Stability and Drug Retention of Polymeric Micelles for<br>Tumorâ€Targeted Drug Delivery. Macromolecular Bioscience, 2017, 17, 1600160.                  | 4.1  | 125       |
| 80 | Covalent attachment of a three-dimensionally printed thermoplast to a gelatin hydrogel for mechanically enhanced cartilage constructs. Acta Biomaterialia, 2014, 10, 2602-2611.                 | 8.3  | 123       |
| 81 | Association and dissociation characteristics of polymer/DNA complexes used for gene delivery.<br>Pharmaceutical Research, 1999, 16, 1534-1541.                                                  | 3.5  | 122       |
| 82 | Preparation and characterization of a three-dimensional printed scaffold based on a functionalized polyester for bone tissue engineering applications. Acta Biomaterialia, 2011, 7, 1999-2006.  | 8.3  | 120       |
| 83 | Tumor stroma-containing 3D spheroid arrays: A tool to study nanoparticle penetration. Journal of<br>Controlled Release, 2016, 244, 257-268.                                                     | 9.9  | 119       |
| 84 | Nanomedicine and macroscale materials in immuno-oncology. Chemical Society Reviews, 2019, 48, 351-381.                                                                                          | 38.1 | 118       |
| 85 | Nanogels for intracellular delivery of biotherapeutics. Journal of Controlled Release, 2017, 259, 16-28.                                                                                        | 9.9  | 116       |
| 86 | Peripheral and Axial Substitution of Phthalocyanines with Solketal Groups:Â Synthesis and In Vitro<br>Evaluation for Photodynamic Therapy. Journal of Medicinal Chemistry, 2007, 50, 1485-1494. | 6.4  | 113       |
| 87 | Intrinsically active nanobody-modified polymeric micelles for tumor-targeted combination therapy.<br>Biomaterials, 2013, 34, 1255-1260.                                                         | 11.4 | 111       |
| 88 | A thermo-responsive and photo-polymerizable chondroitin sulfate-based hydrogel for 3D printing applications. Carbohydrate Polymers, 2016, 149, 163-174.                                         | 10.2 | 111       |
| 89 | A Synthetic Thermosensitive Hydrogel for Cartilage Bioprinting and Its Biofunctionalization with Polysaccharides. Biomacromolecules, 2016, 17, 2137-2147.                                       | 5.4  | 111       |
| 90 | Photosensitiser-loaded biodegradable polymeric micelles: Preparation, characterisation and in vitro<br>PDT efficacy. Journal of Controlled Release, 2007, 124, 144-153.                         | 9.9  | 110       |

3.3

94

| #   | Article                                                                                                                                                                                                                | IF        | CITATIONS    |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------|
| 91  | Preparation and characterization of folate-targeted pEG-coated pDMAEMA-based polyplexes. Journal of Controlled Release, 2003, 87, 167-176.                                                                             | 9.9       | 109          |
| 92  | Water-soluble biodegradable cationic polyphosphazenes for gene delivery. Journal of Controlled<br>Release, 2003, 89, 483-497.                                                                                          | 9.9       | 109          |
| 93  | How to screen non-viral gene delivery systems in vitro?. Journal of Controlled Release, 2011, 154, 218-232.                                                                                                            | 9.9       | 105          |
| 94  | Biodegradable hydrogels based on stereocomplex formation between lactic acid oligomers grafted to dextran. Journal of Controlled Release, 2001, 72, 47-56.                                                             | 9.9       | 104          |
| 95  | In vivo nanotoxicity testing using the zebrafish embryo assay. Journal of Materials Chemistry B, 2013, 1, 3918.                                                                                                        | 5.8       | 104          |
| 96  | Hyaluronic acid and chondroitin sulfate (meth)acrylate-based hydrogels for tissue engineering:<br>Synthesis, characteristics and pre-clinical evaluation. Biomaterials, 2021, 268, 120602.                             | 11.4      | 104          |
| 97  | Poly(N-(2-hydroxypropyl) Methacrylamide Mono/Di Lactate):Â A New Class of Biodegradable Polymers<br>with Tuneable Thermosensitivity. Biomacromolecules, 2004, 5, 818-821.                                              | 5.4       | 102          |
| 98  | Glucocorticoidâ€Loaded Coreâ€Crossâ€Linked Polymeric Micelles with Tailorable Release Kinetics for<br>Targeted Therapy of Rheumatoid Arthritis. Angewandte Chemie - International Edition, 2012, 51,<br>7254-7258.     | 13.8      | 102          |
| 99  | Effect of cationic carriers on the pharmacokinetics and tumor localization of nucleic acids after intravenous administration. International Journal of Pharmaceutics, 2007, 331, 167-175.                              | 5.2       | 101          |
| 100 | Proteinâ€Release Behavior of Selfâ€Assembled PEG– <i>β</i> yclodextrin/PEG–Cholesterol Hydrogels.<br>Advanced Functional Materials, 2009, 19, 2992-3001.                                                               | 14.9      | 101          |
| 101 | In Situ Forming Hydrogels by Tandem Thermal Gelling and Michael Addition Reaction between<br>Thermosensitive Triblock Copolymers and Thiolated Hyaluronan. Macromolecules, 2010, 43, 5771-5778.                        | 4.8       | 101          |
| 102 | Novel Reduction-Responsive Cross-Linked Polyethylenimine Derivatives by Click Chemistry for Nonviral Gene Delivery. Bioconjugate Chemistry, 2010, 21, 1827-1835.                                                       | 3.6       | 99           |
| 103 | Photopolymerized Thermosensitive Hydrogels: Synthesis, Degradation, and Cytocompatibility.<br>Biomacromolecules, 2008, 9, 919-926.                                                                                     | 5.4       | 97           |
| 104 | Circulation kinetics and biodistribution of dual-labeled polymersomes with modulated surface<br>charge in tumor-bearing mice: Comparison with stealth liposomes. Journal of Controlled Release,<br>2011, 155, 282-288. | 9.9       | 97           |
| 105 | An NLS peptide covalently linked to linear DNA does not enhance transfection efficiency of cationic polymer based gene delivery systems. Journal of Gene Medicine, 2005, 7, 208-217.                                   | 2.8       | 96           |
| 106 | The effect of lauryl capping group on protein release and degradation of poly(d,l-lactic-co-glycolic) Tj ETQq0 0 0 r                                                                                                   | gBT /Over | ock 10 Tf 50 |
| 107 | Poly(N-isopropylacrylamide) with hydrolyzable lactic acid ester side groups: a new type of thermosensitive polymer. Macromolecular Rapid Communications, 1999, 20, 577-581.                                            | 3.9       | 94           |

108 Thermosensitive polymeric micelles for targeted drug delivery. Nanomedicine, 2011, 6, 1245-1255.

| #   | Article                                                                                                                                                                                                   | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 109 | Nanobody — Shell functionalized thermosensitive core-crosslinked polymeric micelles for active drug targeting. Journal of Controlled Release, 2011, 151, 183-192.                                         | 9.9  | 94        |
| 110 | Looped Structure of Flowerlike Micelles Revealed by <sup>1</sup> H NMR Relaxometry and Light Scattering. Langmuir, 2011, 27, 9843-9848.                                                                   | 3.5  | 92        |
| 111 | Insights into maleimide-thiol conjugation chemistry: Conditions for efficient surface<br>functionalization of nanoparticles for receptor targeting. Journal of Controlled Release, 2018, 282,<br>101-109. | 9.9  | 91        |
| 112 | Rheological Studies of Thermosensitive Triblock Copolymer Hydrogels. Langmuir, 2006, 22, 10180-10184.                                                                                                     | 3.5  | 90        |
| 113 | Polymeric microparticles for sustained and local delivery of antiCD40 and antiCTLA-4 in immunotherapy of cancer. Biomaterials, 2015, 61, 33-40.                                                           | 11.4 | 89        |
| 114 | Polymeric delivery systems for nucleic acid therapeutics: Approaching the clinic. Journal of Controlled Release, 2021, 331, 121-141.                                                                      | 9.9  | 89        |
| 115 | The fate of poly(2-dimethyl amino ethyl)methacrylate-based polyplexes after intravenous administration. International Journal of Pharmaceutics, 2001, 214, 99-101.                                        | 5.2  | 88        |
| 116 | Nanobody-albumin nanoparticles (NANAPs) for the delivery of a multikinase inhibitor 17864 to EGFR overexpressing tumor cells. Journal of Controlled Release, 2013, 165, 110-118.                          | 9.9  | 88        |
| 117 | Complete regression of breast tumour with a single dose of docetaxel-entrapped core-cross-linked polymeric micelles. Biomaterials, 2015, 53, 370-378.                                                     | 11.4 | 88        |
| 118 | Effects of Physicochemical Characteristics of Poly(2-(dimethylamino)ethyl methacrylate)-Based<br>Polyplexes on Cellular Association and Internalization. Journal of Drug Targeting, 2000, 8, 51-66.       | 4.4  | 87        |
| 119 | Formation of dextran hydrogels by crystallization. Biomaterials, 2001, 22, 1891-1898.                                                                                                                     | 11.4 | 87        |
| 120 | Self-Assembly of Recombinant Amphiphilic Oligopeptides into Vesicles. Biomacromolecules, 2007, 8, 2753-2761.                                                                                              | 5.4  | 87        |
| 121 | Polymeric nanoparticles for co-delivery of synthetic long peptide antigen and poly IC as therapeutic cancer vaccine formulation. Journal of Controlled Release, 2015, 203, 16-22.                         | 9.9  | 87        |
| 122 | Degradation Mechanism and Kinetics of Thermosensitive Polyacrylamides Containing Lactic Acid Side<br>Chains. Macromolecules, 2003, 36, 7491-7498.                                                         | 4.8  | 86        |
| 123 | Influence of the degree of acetylation on the enzymatic degradation and in vitro biological properties of trimethylated chitosans. Biomaterials, 2009, 30, 3129-3135.                                     | 11.4 | 86        |
| 124 | Degradation Kinetics of Methacrylated Dextrans in Aqueous Solution. Journal of Pharmaceutical Sciences, 1997, 86, 413-417.                                                                                | 3.3  | 85        |
| 125 | Development of a thermosensitive HAMA-containing bio-ink for the fabrication of composite cartilage repair constructs. Biofabrication, 2017, 9, 015026.                                                   | 7.1  | 85        |
| 126 | Novel Fast Degradable Thermosensitive Polymeric Micelles Based on<br>PEG-block-poly(N-(2-hydroxyethyl)methacrylamide-oligolactates). Biomacromolecules, 2005, 6,<br>2343-2351.                            | 5.4  | 84        |

| #   | Article                                                                                                                                                                                                                                           | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 127 | Tumor-targeted Nanobullets: Anti-EGFR nanobody-liposomes loaded with anti-IGF-1R kinase inhibitor<br>for cancer treatment. Journal of Controlled Release, 2012, 159, 281-289.                                                                     | 9.9  | 83        |
| 128 | Nanomedicines for advanced cancer treatments: Transitioning towards responsive systems.<br>International Journal of Pharmaceutics, 2016, 515, 132-164.                                                                                            | 5.2  | 83        |
| 129 | Simultaneous Delivery of Multiple Antibacterial Agents from Additively Manufactured Porous<br>Biomaterials to Fully Eradicate Planktonic and Adherent <i>Staphylococcus aureus</i> . ACS Applied<br>Materials & Interfaces, 2017, 9, 25691-25699. | 8.0  | 82        |
| 130 | Copolymers of 2-(dimethylamino)ethyl methacrylate with ethoxytriethylene glycol methacrylate or<br>N-vinyl-pyrrolidone as gene transfer agents. Journal of Controlled Release, 2000, 64, 193-203.                                                 | 9.9  | 80        |
| 131 | Polymer Side-Chain Degradation as a Tool to Control the Destabilization of Polyplexes.<br>Pharmaceutical Research, 2004, 21, 170-176.                                                                                                             | 3.5  | 78        |
| 132 | The microclimate pH in poly(d,l-lactide-co-hydroxymethyl glycolide) microspheres during biodegradation. Biomaterials, 2012, 33, 7584-7593.                                                                                                        | 11.4 | 77        |
| 133 | Reductionâ€Sensitive Dextran Nanogels Aimed for Intracellular Delivery of Antigens. Advanced<br>Functional Materials, 2015, 25, 2993-3003.                                                                                                        | 14.9 | 77        |
| 134 | Intravitreal hydrogels for sustained release of therapeutic proteins. Journal of Controlled Release, 2020, 326, 419-441.                                                                                                                          | 9.9  | 76        |
| 135 | Diffusion of Macromolecules in Dextran Methacrylate Solutions and Gels As Studied by Confocal Scanning Laser Microscopy. Macromolecules, 1997, 30, 4863-4870.                                                                                     | 4.8  | 74        |
| 136 | In situ crosslinked biodegradable hydrogels loaded with IL-2 are effective tools for local IL-2 therapy.<br>European Journal of Pharmaceutical Sciences, 2004, 21, 561-567.                                                                       | 4.0  | 74        |
| 137 | Pharmacokinetics of poly(hydroxyethyl-l-asparagine)-coated liposomes is superior over that of<br>PEG-coated liposomes at low lipid dose and upon repeated administration. Biochimica Et Biophysica<br>Acta - Biomembranes, 2007, 1768, 737-743.   | 2.6  | 73        |
| 138 | Thermoresponsive and Photocrosslinkable PEGMEMA-PPGMA-EGDMA Copolymers from a One-Step ATRP Synthesis. Biomacromolecules, 2009, 10, 822-828.                                                                                                      | 5.4  | 73        |
| 139 | Release behavior and intra-articular biocompatibility of celecoxib-loaded acetyl-capped PCLA-PEG-PCLA thermogels. Biomaterials, 2014, 35, 7919-7928.                                                                                              | 11.4 | 73        |
| 140 | A Kinetic Degradation Study of Curcumin in Its Free Form and Loaded in Polymeric Micelles. AAPS<br>Journal, 2016, 18, 777-787.                                                                                                                    | 4.4  | 73        |
| 141 | Targeting hepatocyte growth factor receptor (Met) positive tumor cells using internalizing nanobody-decorated albumin nanoparticles. Biomaterials, 2014, 35, 601-610.                                                                             | 11.4 | 72        |
| 142 | Clinically established biodegradable long acting injectables: An industry perspective. Advanced Drug<br>Delivery Reviews, 2020, 167, 19-46.                                                                                                       | 13.7 | 72        |
| 143 | A comparative biocompatibility study of microspheres based on crosslinked dextran or<br>poly(lactic-co-glycolic)acid after subcutaneous injection in rats. Journal of Biomedical Materials<br>Research Part B, 2001, 56, 600-609.                 | 3.1  | 71        |
| 144 | Mobility of model proteins in hydrogels composed of oppositely charged dextran microspheres<br>studied by protein release and fluorescence recovery after photobleaching. Journal of Controlled<br>Release, 2005, 110, 67-78.                     | 9.9  | 70        |

| #   | Article                                                                                                                                                                                                                                     | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Methacrylamide Polymers with Hydrolysis-Sensitive Cationic Side Groups as Degradable Gene Carriers.<br>Bioconjugate Chemistry, 2006, 17, 1077-1084.                                                                                         | 3.6  | 70        |
| 146 | In vivo tumor transfection mediated by polyplexes based on biodegradable poly(DMAEA)-phosphazene.<br>Journal of Controlled Release, 2005, 109, 275-287.                                                                                     | 9.9  | 69        |
| 147 | Shielding the cationic charge of nanoparticle-formulated dermal DNA vaccines is essential for antigen expression and immunogenicity. Journal of Controlled Release, 2010, 141, 234-240.                                                     | 9.9  | 67        |
| 148 | Urea removal strategies for dialysate regeneration in a wearable artificial kidney. Biomaterials, 2020, 234, 119735.                                                                                                                        | 11.4 | 67        |
| 149 | Supramolecular hydrogels formed by β-cyclodextrin self-association and host–guest inclusion complexes. Soft Matter, 2010, 6, 187-194.                                                                                                       | 2.7  | 65        |
| 150 | Cationic polymethacrylates with covalently linked membrane destabilizing peptides as gene delivery vectors. Journal of Controlled Release, 2005, 101, 233-246.                                                                              | 9.9  | 64        |
| 151 | Rheological Behavior of Self-Assembling PEG-β-Cyclodextrin/PEG-Cholesterol Hydrogels. Langmuir, 2008, 24, 12559-12567.                                                                                                                      | 3.5  | 64        |
| 152 | Preparation and characterization of protein loaded microspheres based on a hydroxylated aliphatic polyester, poly(lactic-co-hydroxymethyl glycolic acid). Journal of Controlled Release, 2009, 138, 57-63.                                  | 9.9  | 64        |
| 153 | Hyperthermiaâ€Induced Drug Delivery from Thermosensitive Liposomes Encapsulated in an Injectable<br>Hydrogel for Local Chemotherapy. Advanced Healthcare Materials, 2014, 3, 854-859.                                                       | 7.6  | 64        |
| 154 | Near-infrared labeled, ovalbumin loaded polymeric nanoparticles based on a hydrophilic polyester as<br>model vaccine: InÂvivo tracking and evaluation of antigen-specific CD8 + T cell immune response.<br>Biomaterials, 2015, 37, 469-477. | 11.4 | 64        |
| 155 | Molar-Mass Characterization of Cationic Polymers for Gene Delivery by Aqueous Size-Exclusion Chromatography. Pharmaceutical Research, 2006, 23, 595-603.                                                                                    | 3.5  | 62        |
| 156 | The effect of core composition in biodegradable oligomeric micelles as taxane formulations.<br>European Journal of Pharmaceutics and Biopharmaceutics, 2008, 68, 596-606.                                                                   | 4.3  | 62        |
| 157 | Gene Silencing Activity of siRNA Polyplexes Based on Thiolated <i>N</i> , <i>N</i> , <i>N</i> .Trimethylated Chitosan. Bioconjugate Chemistry, 2010, 21, 2339-2346.                                                                         | 3.6  | 62        |
| 158 | mRNA Polyplexes with Post-Conjugated GALA Peptides Efficiently Target, Transfect, and Activate<br>Antigen Presenting Cells. Bioconjugate Chemistry, 2019, 30, 461-475.                                                                      | 3.6  | 62        |
| 159 | In situ forming acyl-capped PCLA–PEG–PCLA triblock copolymer based hydrogels. Biomaterials, 2013, 34,<br>8002-8011.                                                                                                                         | 11.4 | 61        |
| 160 | Thermoresponsive Injectable Hydrogels Cross-Linked by Native Chemical Ligation. Macromolecules, 2014, 47, 2430-2438.                                                                                                                        | 4.8  | 61        |
| 161 | HPMA-based polymeric micelles for curcumin solubilization and inhibition of cancer cell growth.<br>European Journal of Pharmaceutics and Biopharmaceutics, 2015, 94, 501-512.                                                               | 4.3  | 61        |
| 162 | Comparative transfection studies of human ovarian carcinoma cellsin vitro,ex vivo andin vivo with<br>poly(2-(dimethylamino)ethyl methacrylate)-based polyplexes. Journal of Gene Medicine, 1999, 1, 156-165.                                | 2.8  | 59        |

| #   | Article                                                                                                                                                                                                              | IF   | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 163 | PEG shielded polymeric double-layered micelles for gene delivery. Journal of Controlled Release, 2005, 102, 711-724.                                                                                                 | 9.9  | 59        |
| 164 | Biodegradable Poly(2-Dimethylamino Ethylamino)Phosphazene for In Vivo Gene Delivery to Tumor<br>Cells. Effect of Polymer Molecular Weight. Pharmaceutical Research, 2007, 24, 1572-1580.                             | 3.5  | 59        |
| 165 | Controlled Release of Octreotide and Assessment of Peptide Acylation from<br>Poly(D,L-lactide-co-hydroxymethyl glycolide) Compared to PLGA Microspheres. Pharmaceutical<br>Research, 2012, 29, 110-120.              | 3.5  | 58        |
| 166 | Overcoming multidrug resistance using folate receptor-targeted and pH-responsive polymeric nanogels containing covalently entrapped doxorubicin. Nanoscale, 2017, 9, 10404-10419.                                    | 5.6  | 58        |
| 167 | Relationship between structure and adjuvanticity of N,N,N-trimethyl chitosan (TMC) structural variants in a nasal influenza vaccine. Journal of Controlled Release, 2009, 140, 126-133.                              | 9.9  | 57        |
| 168 | A stimuli responsive liposome loaded hydrogel provides flexible on-demand release of therapeutic agents. Acta Biomaterialia, 2017, 48, 110-119.                                                                      | 8.3  | 57        |
| 169 | Evidence for a new mechanism behind HIFU-triggered release from liposomes. Journal of Controlled Release, 2013, 168, 327-333.                                                                                        | 9.9  | 56        |
| 170 | Sustained intra-articular release of celecoxib from in situ forming gels made of acetyl-capped PCLA-PEG-PCLA triblock copolymers in horses. Biomaterials, 2015, 53, 426-436.                                         | 11.4 | 56        |
| 171 | Biofabrication of reinforced 3D-scaffolds using two-component hydrogels. Journal of Materials<br>Chemistry B, 2015, 3, 9067-9078.                                                                                    | 5.8  | 56        |
| 172 | Polymer-protein conjugation <i>via</i> a â€~grafting to' approach – a comparative study of the performance of protein-reactive RAFT chain transfer agents. Polymer Chemistry, 2015, 6, 5602-5614.                    | 3.9  | 56        |
| 173 | In Vitro Hydrolytic Degradation of Hydroxyl-Functionalized Poly(α-hydroxy acid)s. Biomacromolecules, 2007, 8, 2943-2949.                                                                                             | 5.4  | 55        |
| 174 | Photopolymerized Thermosensitive Poly(HPMAlactate)-PEG-Based Hydrogels: Effect of Network Design on Mechanical Properties, Degradation, and Release Behavior. Biomacromolecules, 2010, 11, 2143-2151.                | 5.4  | 55        |
| 175 | Tailorable Thiolated Trimethyl Chitosans for Covalently Stabilized Nanoparticles.<br>Biomacromolecules, 2010, 11, 1965-1971.                                                                                         | 5.4  | 54        |
| 176 | Synthesis and Characterization of Biodegradable and Thermosensitive Polymeric Micelles with<br>Covalently Bound Doxorubicin-Glucuronide Prodrug via Click Chemistry. Bioconjugate Chemistry,<br>2011, 22, 2519-2530. | 3.6  | 54        |
| 177 | PEG-OCL micelles for quercetin solubilization and inhibition of cancer cell growth. European Journal of Pharmaceutics and Biopharmaceutics, 2011, 79, 268-275.                                                       | 4.3  | 54        |
| 178 | Triggered Release of Doxorubicin from Temperature-Sensitive<br>Poly( <i>N</i> -(2-hydroxypropyl)-methacrylamide mono/dilactate) Grafted Liposomes.<br>Biomacromolecules, 2014, 15, 1002-1009.                        | 5.4  | 52        |
| 179 | Interfacially Hydrazone Cross-linked Thermosensitive Polymeric Micelles for Acid-Triggered Release of Paclitaxel. ACS Biomaterials Science and Engineering, 2015, 1, 393-404.                                        | 5.2  | 52        |
| 180 | Controlled release of liposomes from biodegradable dextran microspheres: a novel delivery concept.<br>Pharmaceutical Research, 2000, 17, 664-669.                                                                    | 3.5  | 51        |

| #   | Article                                                                                                                                                                                                                        | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 181 | A mechanistic Study on the Chemical and Enzymatic Degradation of PEGâ€Oligo(εâ€caprolactone) Micelles.<br>Journal of Pharmaceutical Sciences, 2008, 97, 506-518.                                                               | 3.3  | 50        |
| 182 | A micelle-shedding thermosensitive hydrogel as sustained release formulation. Journal of Controlled Release, 2012, 162, 582-590.                                                                                               | 9.9  | 50        |
| 183 | The Supramolecular Organization of a Peptide-Based Nanocarrier at High Molecular Detail. Journal of the American Chemical Society, 2015, 137, 7775-7784.                                                                       | 13.7 | 50        |
| 184 | Synthesis and characterization of poly-L-lysine with controlled low molecular weight.<br>Macromolecular Chemistry and Physics, 1997, 198, 3893-3906.                                                                           | 2.2  | 49        |
| 185 | Synthesis and characterization of allyl functionalized poly(α-hydroxy)acids and their further dihydroxylation and epoxidation. European Polymer Journal, 2008, 44, 308-317.                                                    | 5.4  | 49        |
| 186 | Macromolecular Diffusion in Self-Assembling Biodegradable Thermosensitive Hydrogels.<br>Macromolecules, 2010, 43, 782-789.                                                                                                     | 4.8  | 49        |
| 187 | Coaxially Electrospun Scaffolds Based on Hydroxyl-Functionalized Poly(ε-caprolactone) and Loaded with VEGF for Tissue Engineering Applications. Biomacromolecules, 2012, 13, 3650-3660.                                        | 5.4  | 49        |
| 188 | Degradable Ketal-Based Block Copolymer Nanoparticles for Anticancer Drug Delivery: A Systematic<br>Evaluation. Biomacromolecules, 2015, 16, 336-350.                                                                           | 5.4  | 49        |
| 189 | Selective Cytotoxicity to HER2 Positive Breast Cancer Cells by Saporin-Loaded Nanobody-Targeted<br>Polymeric Nanoparticles in Combination with Photochemical Internalization. Molecular<br>Pharmaceutics, 2019, 16, 1633-1647. | 4.6  | 49        |
| 190 | Photocytotoxicity of mTHPC (Temoporfin) Loaded Polymeric Micelles Mediated by Lipase Catalyzed Degradation. Pharmaceutical Research, 2008, 25, 2065-2073.                                                                      | 3.5  | 48        |
| 191 | Formulation and characterization of microspheres loaded with imatinib for sustained delivery.<br>International Journal of Pharmaceutics, 2015, 482, 123-130.                                                                   | 5.2  | 48        |
| 192 | Enhanced gentamicin loading and release of PLGA and PLHMGA microspheres by varying the formulation parameters. Colloids and Surfaces B: Biointerfaces, 2011, 84, 508-514.                                                      | 5.0  | 46        |
| 193 | Self-Assembling Peptide Epitopes as Novel Platform for Anticancer Vaccination. Molecular Pharmaceutics, 2017, 14, 1482-1493.                                                                                                   | 4.6  | 46        |
| 194 | Polymeric micelles for cancer therapy: 3 C's to enhance efficacy. Current Opinion in Solid State and Materials Science, 2012, 16, 302-309.                                                                                     | 11.5 | 45        |
| 195 | Polyplexes based on cationic polymers with strong nucleic acid binding properties. European Journal of Pharmaceutical Sciences, 2012, 45, 459-466.                                                                             | 4.0  | 45        |
| 196 | Effect of Polymer Composition on Rheological and Degradation Properties of Temperature-Responsive<br>Gelling Systems Composed of Acyl-Capped PCLA-PEG-PCLA. Biomacromolecules, 2013, 14, 3172-3182.                            | 5.4  | 45        |
| 197 | Thermally triggered release of a pro-osteogenic peptide from a functionalized collagen-based scaffold using thermosensitive liposomes. Journal of Controlled Release, 2014, 187, 158-166.                                      | 9.9  | 45        |
| 198 | Effect of Formulation and Processing Parameters on the Size of mPEG- <i>b</i> -p(HPMA-Bz) Polymeric<br>Micelles. Langmuir, 2018, 34, 15495-15506.                                                                              | 3.5  | 45        |

| #   | Article                                                                                                                                                                                                                                               | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Synthesis and Characterization of Hydroxyl-Functionalized Caprolactone Copolymers and Their<br>Effect on Adhesion, Proliferation, and Differentiation of Human Mesenchymal Stem Cells.<br>Biomacromolecules, 2009, 10, 3048-3054.                     | 5.4 | 44        |
| 200 | A systematic comparison of clinically viable nanomedicines targeting HMG-CoA reductase in inflammatory atherosclerosis. Journal of Controlled Release, 2017, 262, 47-57.                                                                              | 9.9 | 44        |
| 201 | Degradable PEG-folate coated poly(DMAEA-co-BA)phosphazene-based polyplexes exhibit<br>receptor-specific gene expression. European Journal of Pharmaceutical Sciences, 2008, 33, 241-251.                                                              | 4.0 | 43        |
| 202 | Antitumor efficacy of dexamethasone-loaded core-crosslinked polymeric micelles. Journal of Controlled Release, 2012, 163, 361-367.                                                                                                                    | 9.9 | 43        |
| 203 | EGFR-Targeted Nanobody Functionalized Polymeric Micelles Loaded with mTHPC for Selective Photodynamic Therapy. Molecular Pharmaceutics, 2020, 17, 1276-1292.                                                                                          | 4.6 | 43        |
| 204 | Effect of particle size and charge on the network properties of microsphere-based hydrogels.<br>European Journal of Pharmaceutics and Biopharmaceutics, 2008, 70, 522-530.                                                                            | 4.3 | 41        |
| 205 | Decationized crosslinked polyplexes for redox-triggered gene delivery. Journal of Controlled Release, 2013, 169, 246-256.                                                                                                                             | 9.9 | 41        |
| 206 | PLGA-PEG nanoparticles for targeted delivery of the mTOR/PI3kinase inhibitor dactolisib to inflamed endothelium. International Journal of Pharmaceutics, 2018, 548, 747-758.                                                                          | 5.2 | 40        |
| 207 | Direct covalent attachment of silver nanoparticles on radical-rich plasma polymer films for antibacterial applications. Journal of Materials Chemistry B, 2018, 6, 5845-5853.                                                                         | 5.8 | 40        |
| 208 | Biotin-decorated all-HPMA polymeric micelles for paclitaxel delivery. Journal of Controlled Release, 2020, 328, 970-984.                                                                                                                              | 9.9 | 40        |
| 209 | Lipid-coated polyplexes for targeted gene delivery to ovarian carcinoma cells. Cancer Gene Therapy, 2001, 8, 405-413.                                                                                                                                 | 4.6 | 39        |
| 210 | Modulating rheological and degradation properties of temperature-responsive gelling systems<br>composed of blends of PCLA–PEG–PCLA triblock copolymers and their fully hexanoyl-capped<br>derivatives. Acta Biomaterialia, 2012, 8, 4260-4267.        | 8.3 | 39        |
| 211 | Reversible Addition–Fragmentation Chain Transfer Synthesis of a Micelle-Forming, Structure<br>Reversible Thermosensitive Diblock Copolymer Based on the <i>N</i> -(2-Hydroxy propyl)<br>Methacrylamide Backbone. ACS Macro Letters, 2013, 2, 403-408. | 4.8 | 39        |
| 212 | Plasmid Engineering for Controlled and Sustained Gene Expression for Nonviral Gene Therapy.<br>Pharmaceutical Research, 2006, 23, 1053-1074.                                                                                                          | 3.5 | 38        |
| 213 | Gene silencing activity of siRNA polyplexes based on biodegradable polymers. European Journal of<br>Pharmaceutics and Biopharmaceutics, 2011, 77, 450-457.                                                                                            | 4.3 | 38        |
| 214 | Decationized polyplexes as stable and safe carrier systems for improved biodistribution in systemic gene therapy. Journal of Controlled Release, 2014, 195, 162-175.                                                                                  | 9.9 | 38        |
| 215 | Small Oligomeric Micelles Based on End Group Modified mPEGâ^'Oligocaprolactone with Monodisperse<br>Hydrophobic Blocks. Macromolecules, 2007, 40, 116-122.                                                                                            | 4.8 | 37        |
| 216 | Tailoring the physicochemical properties of core-crosslinked polymeric micelles for pharmaceutical applications. Journal of Controlled Release, 2016, 244, 314-325.                                                                                   | 9.9 | 37        |

| #   | Article                                                                                                                                                                                                                           | IF   | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 217 | A Mixed Micelle Formulation for Oral Delivery of Vitamin K. Pharmaceutical Research, 2016, 33, 2168-2179.                                                                                                                         | 3.5  | 37        |
| 218 | Sunitinib microspheres based on [PDLLA-PEG-PDLLA]-b-PLLA multi-block copolymers for ocular drug delivery. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 95, 368-377.                                              | 4.3  | 36        |
| 219 | Macrophage selective photodynamic therapy by meta-tetra(hydroxyphenyl)chlorin loaded polymeric<br>micelles: A possible treatment for cardiovascular diseases. European Journal of Pharmaceutical<br>Sciences, 2017, 107, 112-125. | 4.0  | 36        |
| 220 | Hydrogels of collagen-inspired telechelic triblock copolymers for the sustained release of proteins.<br>Journal of Controlled Release, 2010, 147, 298-303.                                                                        | 9.9  | 35        |
| 221 | Strong in vivo antitumor responses induced by an antigen immobilized in nanogels via reducible bonds. Nanoscale, 2016, 8, 19592-19604.                                                                                            | 5.6  | 35        |
| 222 | Luminescent Gold Nanocluster-Decorated Polymeric Hybrid Particles with Assembly-Induced Emission.<br>Biomacromolecules, 2018, 19, 2841-2848.                                                                                      | 5.4  | 35        |
| 223 | Mechanistic Studies on the Degradation and Protein Release Characteristics of<br>Poly(lactic- <i>co</i> -glycolic- <i>co</i> -hydroxymethylglycolic acid) Nanospheres.<br>Biomacromolecules, 2013, 14, 1044-1053.                 | 5.4  | 34        |
| 224 | Polyethyleneimine coated nanogels for the intracellular delivery of RNase A for cancer therapy.<br>Chemical Engineering Journal, 2018, 340, 32-41.                                                                                | 12.7 | 34        |
| 225 | PLGA nanoparticles loaded with beta-lactoglobulin-derived peptides modulate mucosal immunity and may facilitate cow's milk allergy prevention. European Journal of Pharmacology, 2018, 818, 211-220.                              | 3.5  | 34        |
| 226 | A multifaceted biomimetic interface to improve the longevity of orthopedic implants. Acta<br>Biomaterialia, 2020, 110, 266-279.                                                                                                   | 8.3  | 34        |
| 227 | Characterization of holmium loaded alginate microspheres for multimodality imaging and therapeutic applications. Journal of Biomedical Materials Research - Part A, 2007, 82A, 892-898.                                           | 4.0  | 33        |
| 228 | Cancer nanomedicine meets immunotherapy: opportunities and challenges. Acta Pharmacologica<br>Sinica, 2020, 41, 954-958.                                                                                                          | 6.1  | 33        |
| 229 | Thermosensitive Peptide-Hybrid ABC Block Copolymers Obtained by ATRP: Synthesis, Self-Assembly, and Enzymatic Degradation. Macromolecules, 2012, 45, 842-851.                                                                     | 4.8  | 32        |
| 230 | Versatile Supramolecular Gene Vector Based on Host–Guest Interaction. Bioconjugate Chemistry, 2016, 27, 1143-1152.                                                                                                                | 3.6  | 32        |
| 231 | Surface characteristics of holmium-loaded poly(l-lactic acid) microspheres. Biomaterials, 2005, 26, 925-932.                                                                                                                      | 11.4 | 31        |
| 232 | Biodegradable Microspheres Loaded with an Anti-Parkinson Prodrug: An <i>in Vivo</i> Pharmacokinetic Study. Molecular Pharmaceutics, 2011, 8, 2408-2415.                                                                           | 4.6  | 31        |
| 233 | Facile Fabrication of Thermoâ€Responsive and Reductionâ€Sensitive Polymeric Micelles for Anticancer<br>Drug Delivery. Macromolecular Bioscience, 2012, 12, 703-711.                                                               | 4.1  | 31        |
| 234 | Polymers and hydrogels for local nucleic acid delivery. Journal of Materials Chemistry B, 2018, 6, 5651-5670.                                                                                                                     | 5.8  | 31        |

| #   | Article                                                                                                                                                                                                                      | IF   | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 235 | Cationic synthetic long peptides-loaded nanogels: An efficient therapeutic vaccine formulation for induction of T-cell responses. Journal of Controlled Release, 2019, 315, 114-125.                                         | 9.9  | 31        |
| 236 | Synthesis and Characterization of Random and Triblock Copolymers of ε-Caprolactone and (Benzylated)hydroxymethyl glycolide. Macromolecules, 2007, 40, 7208-7216.                                                             | 4.8  | 30        |
| 237 | A novel approach for the intravenous delivery of leuprolide using core-cross-linked polymeric micelles. Journal of Controlled Release, 2015, 205, 98-108.                                                                    | 9.9  | 30        |
| 238 | Optical imaging of the whole-body to cellular biodistribution of clinical-stage PEG-b-pHPMA-based core-crosslinked polymeric micelles. Journal of Controlled Release, 2020, 328, 805-816.                                    | 9.9  | 30        |
| 239 | Reprint of "Nanobody — Shell functionalized thermosensitive core-crosslinked polymeric micelles for active drug targeting". Journal of Controlled Release, 2011, 153, 93-102.                                                | 9.9  | 29        |
| 240 | Protein macromonomers containing reduction-sensitive linkers for covalent immobilization and<br>glutathione triggered release from dextran hydrogels. Journal of Controlled Release, 2011, 156,<br>329-336.                  | 9.9  | 29        |
| 241 | Computer Modeling Assisted Design of Monodisperse PLGA Microspheres with Controlled Porosity<br>Affords Zero Order Release of an Encapsulated Macromolecule for 3ÂMonths. Pharmaceutical<br>Research, 2014, 31, 2844-2856.   | 3.5  | 29        |
| 242 | Micellar Paclitaxel-Initiated RAFT Polymer Conjugates with Acid-Sensitive Behavior. ACS Macro Letters, 2017, 6, 272-276.                                                                                                     | 4.8  | 29        |
| 243 | <i>In Vitro</i> and <i>In Vivo</i> Studies on HPMA-Based Polymeric Micelles Loaded with Curcumin.<br>Molecular Pharmaceutics, 2021, 18, 1247-1263.                                                                           | 4.6  | 29        |
| 244 | Chitosan-based formulations of drugs, imaging agents and biotherapeutics. Advanced Drug Delivery<br>Reviews, 2010, 62, 1-2.                                                                                                  | 13.7 | 28        |
| 245 | A one-step process in preparation of cationic nanoparticles with poly(lactide-co-glycolide)-containing<br>polyethylenimine gives efficient gene delivery. European Journal of Pharmaceutical Sciences, 2012, 46,<br>522-529. | 4.0  | 28        |
| 246 | Alginate–lanthanide microspheres for MRI-guided embolotherapy. Acta Biomaterialia, 2013, 9, 4681-4687.                                                                                                                       | 8.3  | 28        |
| 247 | Thermogelling and Chemoselectively Cross-Linked Hydrogels with Controlled Mechanical Properties and Degradation Behavior. Biomacromolecules, 2015, 16, 2840-2851.                                                            | 5.4  | 28        |
| 248 | The effect of network charge on the immobilization and release of proteins from chemically<br>crosslinked dextran hydrogels. European Journal of Pharmaceutics and Biopharmaceutics, 2010, 76,<br>329-335.                   | 4.3  | 27        |
| 249 | Hydrophilic Polyester Microspheres: Effect of Molecular Weight and Copolymer Composition on Release of BSA. Pharmaceutical Research, 2010, 27, 2008-2017.                                                                    | 3.5  | 26        |
| 250 | Synthetic vehicles for DNA vaccination. Journal of Drug Targeting, 2010, 18, 1-14.                                                                                                                                           | 4.4  | 26        |
| 251 | Cytostatic effect of xanthone-loaded mPEG-b-p(HPMAm-Lac2) micelles towards doxorubicin sensitive and resistant cancer cells. Colloids and Surfaces B: Biointerfaces, 2012, 94, 266-273.                                      | 5.0  | 26        |
| 252 | Targeted Decationized Polyplexes for Cell Specific Gene Delivery. Bioconjugate Chemistry, 2014, 25, 802-812.                                                                                                                 | 3.6  | 26        |

| #   | Article                                                                                                                                                                                                                | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 253 | Anthracene functionalized thermosensitive and UV-crosslinkable polymeric micelles. Polymer Chemistry, 2015, 6, 2048-2053.                                                                                              | 3.9 | 26        |
| 254 | Complex coacervation-based loading and tunable release of a cationic protein from monodisperse glycosaminoglycan microgels. Soft Matter, 2018, 14, 6327-6341.                                                          | 2.7 | 25        |
| 255 | Local release of siRNA using polyplex-loaded thermosensitive hydrogels. Nanoscale, 2020, 12, 10347-10360.                                                                                                              | 5.6 | 25        |
| 256 | Oxidation of recombinant human interleukin-2 by potassium peroxodisulfate. Pharmaceutical<br>Research, 2001, 18, 1461-1467.                                                                                            | 3.5 | 24        |
| 257 | Conjugation of Methacrylamide Groups to a Model Protein via a Reducible Linker for Immobilization<br>and Subsequent Triggered Release from Hydrogels. Macromolecular Bioscience, 2010, 10, 1517-1526.                  | 4.1 | 24        |
| 258 | Modular core-shell polymeric nanoparticles mimicking viral structures for vaccination. Journal of Controlled Release, 2019, 293, 48-62.                                                                                | 9.9 | 24        |
| 259 | ATRP, subsequent azide substitution and â€ <sup>~</sup> click' chemistry: three reactions using one catalyst in one pot. Chemical Communications, 2011, 47, 6972.                                                      | 4.1 | 23        |
| 260 | Two-component thermosensitive hydrogels: Phase separation affecting rheological behavior.<br>European Polymer Journal, 2017, 92, 13-26.                                                                                | 5.4 | 23        |
| 261 | Effectiveness of slow-release systems in CD40 agonistic antibody immunotherapy of cancer. Vaccine, 2014, 32, 1654-1660.                                                                                                | 3.8 | 22        |
| 262 | Identification and Assessment of Octreotide Acylation in Polyester Microspheres by LC–MS/MS.<br>Pharmaceutical Research, 2015, 32, 3044-3054.                                                                          | 3.5 | 22        |
| 263 | Targeted Decationized Polyplexes for siRNA Delivery. Molecular Pharmaceutics, 2015, 12, 150-161.                                                                                                                       | 4.6 | 22        |
| 264 | Biodegradable, Cationic Methacrylamide-Based Polymers for Gene Delivery to Ovarian Cancer Cells in<br>Mice. Molecular Pharmaceutics, 2008, 5, 349-357.                                                                 | 4.6 | 21        |
| 265 | The tissue response to photopolymerized PEGâ€p(HPMAmâ€lactate)â€based hydrogels. Journal of Biomedical<br>Materials Research - Part A, 2011, 97A, 219-229.                                                             | 4.0 | 21        |
| 266 | Sustained Release of Vascular Endothelial Growth Factor from<br>Poly(ε-caprolactone-PEG-ε-caprolactone)- <i>b</i> -Poly( <scp>I</scp> -lactide) Multiblock Copolymer<br>Microspheres. ACS Omega, 2019, 4, 11481-11492. | 3.5 | 21        |
| 267 | Folate decorated polymeric micelles for targeted delivery of the kinase inhibitor dactolisib to cancer cells. International Journal of Pharmaceutics, 2020, 582, 119305.                                               | 5.2 | 21        |
| 268 | Cationic polymeric gene delivery of β-glucuronidase for doxorubicin prodrug therapy. Journal of Gene<br>Medicine, 1999, 1, 407-414.                                                                                    | 2.8 | 20        |
| 269 | Alginate microgels loaded with temperature sensitive liposomes for magnetic resonance imageable drug release and microgel visualization. European Polymer Journal, 2015, 72, 620-631.                                  | 5.4 | 20        |
| 270 | Transiently Responsive Block Copolymer Micelles Based on <i>N</i> -(2-Hydroxypropyl)methacrylamide<br>Engineered with Hydrolyzable Ethylcarbonate Side Chains. Biomacromolecules, 2016, 17, 119-127.                   | 5.4 | 20        |

| #   | Article                                                                                                                                                                                      | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 271 | Endothelial Cell Targeting by cRGD-Functionalized Polymeric Nanoparticles under Static and Flow Conditions. Nanomaterials, 2020, 10, 1353.                                                   | 4.1 | 20        |
| 272 | Hyaluronic Acid-PEG-Based Diels–Alder <i>In Situ</i> Forming Hydrogels for Sustained Intraocular<br>Delivery of Bevacizumab. Biomacromolecules, 2022, 23, 2914-2929.                         | 5.4 | 20        |
| 273 | Nanoparticles Based on a Hydrophilic Polyester with a Sheddable PEG Coating for Protein Delivery.<br>Pharmaceutical Research, 2014, 31, 2593-2604.                                           | 3.5 | 19        |
| 274 | Particulate Systems Based on Poly(Lactic-co-Glycolic)Acid (pLGA) for Immunotherapy of Cancer.<br>Current Pharmaceutical Design, 2015, 21, 4201-4216.                                         | 1.9 | 19        |
| 275 | A novel oral iron-complex formulation: Encapsulation of hemin in polymeric micelles and its in vitro absorption. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 108, 226-234. | 4.3 | 18        |
| 276 | Light-Triggered Cellular Delivery of Oligonucleotides. Pharmaceutics, 2019, 11, 90.                                                                                                          | 4.5 | 18        |
| 277 | New Insights into the HIFU-Triggered Release from Polymeric Micelles. Langmuir, 2013, 29, 9483-9490.                                                                                         | 3.5 | 17        |
| 278 | PEG-pHPMAm-based polymeric micelles loaded with doxorubicin-prodrugs in combination antitumor therapy with oncolytic vaccinia viruses. Polymer Chemistry, 2014, 5, 1674-1681.                | 3.9 | 17        |
| 279 | Fluorophore labeling of core-crosslinked polymeric micelles for multimodal <i>in vivo</i> and <i>ex vivo</i> optical imaging. Nanomedicine, 2015, 10, 1111-1125.                             | 3.3 | 17        |
| 280 | Lyophilization stabilizes clinicalâ€stage coreâ€crosslinked polymeric micelles to overcome cold chain<br>supply challenges. Biotechnology Journal, 2021, 16, e2000212.                       | 3.5 | 17        |
| 281 | Decationized polyplexes for gene delivery. Expert Opinion on Drug Delivery, 2015, 12, 507-512.                                                                                               | 5.0 | 16        |
| 282 | Small nanosized poly(vinyl benzyl trimethylammonium chloride) based polyplexes for siRNA delivery.<br>International Journal of Pharmaceutics, 2017, 525, 388-396.                            | 5.2 | 16        |
| 283 | Degradation, intra-articular retention and biocompatibility of monospheres composed of<br>[PDLLA-PEG-PDLLA]-b-PLLA multi-block copolymers. Acta Biomaterialia, 2017, 48, 401-414.            | 8.3 | 16        |
| 284 | Effect of Substituents on the Reactivity of Ninhydrin with Urea. ChemistrySelect, 2018, 3, 1224-1229.                                                                                        | 1.5 | 16        |
| 285 | Conversion of an Injectable MMP-Degradable Hydrogel into Core-Cross-Linked Micelles.<br>Biomacromolecules, 2020, 21, 1739-1751.                                                              | 5.4 | 16        |
| 286 | Therapeutic Nanomedicine: Cross linked micelles with transiently linked drugs – a versatile drug delivery system. European Journal of Nanomedicine, 2010, 3, 19-24.                          | 0.6 | 15        |
| 287 | An Electrospun Degradable Scaffold Based on a Novel Hydrophilic Polyester for Tissueâ€Engineering<br>Applications. Macromolecular Bioscience, 2011, 11, 1684-1692.                           | 4.1 | 15        |
| 288 | PEG stabilized DNA – poly(ferrocenylsilane) polyplexes for gene delivery. Chemical Communications, 2016, 52, 7707-7710.                                                                      | 4.1 | 15        |

| #   | Article                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 289 | In vivo pharmacokinetics of celecoxib loaded endcapped PCLA-PEG-PCLA thermogels in rats after subcutaneous administration. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 131, 170-177.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.3 | 15        |
| 290 | Post-PEGylated and crosslinked polymeric ssRNA nanocomplexes as adjuvants targeting lymph nodes with increased cytolytic T cell inducing properties. Journal of Controlled Release, 2018, 284, 73-83.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9.9 | 15        |
| 291 | Vascular Endothelial Growth Factor–Releasing Microspheres Based on<br>Poly(ε-Caprolactone-PEG-ε-Caprolactone)-b-Poly(L-Lactide) Multiblock Copolymers Incorporated in a<br>Three-Dimensional Printed Poly(Dimethylsiloxane) Cell Macroencapsulation Device. Journal of<br>Pharmaceutical Sciences. 2020. 109. 863-870.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.3 | 15        |
| 292 | Dithiolane-Crosslinked Poly(ε-caprolactone)-Based Micelles: Impact of Monomer Sequence, Nature of<br>Monomer, and Reducing Agent on the Dynamic Crosslinking Properties. Macromolecules, 2020, 53,<br>7009-7024.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.8 | 15        |
| 293 | Tuning Size and Morphology of mPEG-b-p(HPMA-Bz) Copolymer Self-Assemblies Using Microfluidics.<br>Polymers, 2020, 12, 2572.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.5 | 15        |
| 294 | Pharmaceutical Micelles: Combining Longevity, Stability, and Stimuli Sensitivity. Fundamental<br>Biomedical Technologies, 2008, , 263-308.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.2 | 14        |
| 295 | A step-by-step approach to study the influence of N-acetylation on the adjuvanticity of N,N,N-trimethyl<br>chitosan (TMC) in an intranasal nanoparticulate influenza virus vaccine. European Journal of<br>Pharmaceutical Sciences, 2012, 45, 467-474.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.0 | 14        |
| 296 | Inhibition of Octreotide Acylation Inside PLGA Microspheres by Derivatization of the Amines of the Peptide with a Self-Immolative Protecting Group. Bioconjugate Chemistry, 2016, 27, 576-585.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.6 | 14        |
| 297 | Acylation of arginine in goserelin-loaded PLGA microspheres. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 99, 18-23.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.3 | 14        |
| 298 | Lipogels responsive to near-infrared light for the triggered release of therapeutic agents. Acta<br>Biomaterialia, 2017, 61, 54-65.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.3 | 14        |
| 299 | Balancing hydrophobic and electrostatic interactions in thermosensitive polyplexes for nucleic acid delivery. Multifunctional Materials, 2019, 2, 024002.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.7 | 14        |
| 300 | LCST polymers with UCST behavior. Soft Matter, 2021, 17, 2132-2141.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.7 | 14        |
| 301 | 1H NMR Spectroscopy as a Tool for Determining the Composition of<br>Poly(hydroxyethyl-l-asparagine)-Coated Liposomes. Bioconjugate Chemistry, 2006, 17, 860-864.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.6 | 13        |
| 302 | Holmium–lipiodol–alginate microspheres for fluoroscopy-guided embolotherapy and multimodality<br>imaging. International Journal of Pharmaceutics, 2015, 482, 47-53.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.2 | 13        |
| 303 | Utilizing in vitro drug release assays to predict in vivo drug retention in micelles. International<br>Journal of Pharmaceutics, 2022, 618, 121638.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.2 | 13        |
| 304 | Methyleneation of Peptides by <i>N</i> , <i>N</i> , <i>N</i> , <i>N</i> . <i>N</i> , | 3.6 | 12        |
| 305 | Correlation between in vitro stability and pharmacokinetics of poly(ε-caprolactone)-based micelles<br>loaded with a photosensitizer. Journal of Controlled Release, 2020, 328, 942-951.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.9 | 12        |
| 306 | Post-loading of proangiogenic growth factors in PLGA microspheres. European Journal of<br>Pharmaceutics and Biopharmaceutics, 2021, 158, 1-10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.3 | 12        |

| #   | Article                                                                                                                                                                                                                                                                                              | IF  | CITATIONS |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 307 | Synthesis and characterization of tailorable biodegradable thermoresponsive methacryloylamide polymers based on I-serine and I-threonine alkyl esters. Polymer, 2010, 51, 2479-2485.                                                                                                                 | 3.8 | 11        |
| 308 | Biocompatibility of poly(d,l-lactic-co-hydroxymethyl glycolic acid) microspheres after subcutaneous and subcapsular renal injection. International Journal of Pharmaceutics, 2015, 482, 99-109.                                                                                                      | 5.2 | 11        |
| 309 | Systematic evaluation of design features enables efficient selection of Î electron-stabilized polymeric micelles. International Journal of Pharmaceutics, 2020, 584, 119409.                                                                                                                         | 5.2 | 11        |
| 310 | A facile modular approach toward multifunctional supramolecular polyplexes for targeting gene<br>delivery. Journal of Materials Chemistry B, 2016, 4, 7022-7030.                                                                                                                                     | 5.8 | 10        |
| 311 | Degradation, Intra-Articular Biocompatibility, Drug Release, and Bioactivity of Tacrolimus-Loaded<br>Poly( <scp>d</scp> - <scp>l</scp> -lactide-PEG)- <i>b</i> poly( <scp>l</scp> -lactide) Multiblock<br>Copolymer-Based Monospheres. ACS Biomaterials Science and Engineering, 2018, 4, 2390-2403. | 5.2 | 10        |
| 312 | Water-soluble cationic poly(ferrocenylsilane): An efficient DNA condensation and transfection agent.<br>Journal of Controlled Release, 2006, 116, e81-e83.                                                                                                                                           | 9.9 | 9         |
| 313 | Tissue response in the rat and the mouse to degradable dextran hydrogels. Journal of Biomedical<br>Materials Research - Part A, 2007, 83A, 538-545.                                                                                                                                                  | 4.0 | 9         |
| 314 | Polymeric Nanogels with Tailorable Degradation Behavior. Macromolecular Bioscience, 2016, 16, 1122-1137.                                                                                                                                                                                             | 4.1 | 9         |
| 315 | Scale-Up of the Manufacturing Process To Produce Docetaxel-Loaded mPEG- <i>b</i> -p(HPMA-Bz) Block<br>Copolymer Micelles for Pharmaceutical Applications. Organic Process Research and Development,<br>2019, 23, 2707-2715.                                                                          | 2.7 | 9         |
| 316 | Apoptosis-inducing peptide loaded in PLGA nanoparticles induces anti-tumor effects in vivo.<br>International Journal of Pharmaceutics, 2020, 585, 119535.                                                                                                                                            | 5.2 | 9         |
| 317 | New mixed matrix membrane for the removal of urea from dialysate solution. Separation and Purification Technology, 2021, 277, 119408.                                                                                                                                                                | 7.9 | 9         |
| 318 | Tuning the size of all-HPMA polymeric micelles fabricated by solvent extraction. Journal of Controlled Release, 2022, 343, 338-346.                                                                                                                                                                  | 9.9 | 9         |
| 319 | Release and pharmacokinetics of near-infrared labeled albumin from monodisperse<br>poly(d,l-lactic-co-hydroxymethyl glycolic acid) microspheres after subcapsular renal injection. Acta<br>Biomaterialia, 2015, 22, 141-154.                                                                         | 8.3 | 8         |
| 320 | A Ninhydrinâ€Type Urea Sorbent for the Development of a Wearable Artificial Kidney. Macromolecular<br>Bioscience, 2020, 20, e1900396.                                                                                                                                                                | 4.1 | 8         |
| 321 | High systemic availability of core-crosslinked polymeric micelles after subcutaneous administration.<br>International Journal of Pharmaceutics, 2016, 514, 112-120.                                                                                                                                  | 5.2 | 7         |
| 322 | Reactivity of (Vicinal) Carbonyl Compounds with Urea. ACS Omega, 2019, 4, 11928-11937.                                                                                                                                                                                                               | 3.5 | 7         |
| 323 | RGD-decorated cholesterol stabilized polyplexes for targeted siRNA delivery to glioblastoma cells.<br>Drug Delivery and Translational Research, 2019, 9, 679-693.                                                                                                                                    | 5.8 | 7         |
| 324 | Hydrolytic (In)stability of Methacrylate Esters in Covalently Cross-Linked Hydrogels Based on<br>Chondroitin Sulfate and Hyaluronic Acid Methacrylate. ACS Omega, 2021, 6, 26302-26310.                                                                                                              | 3.5 | 7         |

| #   | Article                                                                                                                                                                                                      | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 325 | Assessing the Effects of VEGF Releasing Microspheres on the Angiogenic and Foreign Body Response to a 3D Printed Silicone-Based Macroencapsulation Device. Pharmaceutics, 2021, 13, 2077.                    | 4.5  | 7         |
| 326 | Polymeric Micelles with Transient Stability: A Novel Delivery Concept. ACS Symposium Series, 2006, , 40-54.                                                                                                  | 0.5  | 6         |
| 327 | Influence of PEGylation of Vitamin-K-Loaded Mixed Micelles on the Uptake by and Transport through Caco-2 Cells. Molecular Pharmaceutics, 2018, 15, 3786-3795.                                                | 4.6  | 6         |
| 328 | Phenylglyoxaldehyde-Functionalized Polymeric Sorbents for Urea Removal from Aqueous Solutions.<br>ACS Applied Polymer Materials, 2020, 2, 515-527.                                                           | 4.4  | 6         |
| 329 | Polymeric micelles loaded with carfilzomib increase tolerability in a humanized bone marrow-like scaffold mouse model. International Journal of Pharmaceutics: X, 2020, 2, 100049.                           | 1.6  | 6         |
| 330 | A Doxorubicin-Glucuronide Prodrug Released from Nanogels Activated by High-Intensity Focused Ultrasound Liberated β-Glucuronidase. Pharmaceutics, 2020, 12, 536.                                             | 4.5  | 6         |
| 331 | ï€-ï€-Stacked Poly(ε-caprolactone)-b-poly(ethylene glycol) Micelles Loaded with a Photosensitizer for<br>Photodynamic Therapy. Pharmaceutics, 2020, 12, 338.                                                 | 4.5  | 6         |
| 332 | Tuning Surface Charges of Peptide Nanofibers for Induction of Antigen-Specific Immune Tolerance: An<br>Introductory Study. Journal of Pharmaceutical Sciences, 2022, 111, 1004-1011.                         | 3.3  | 6         |
| 333 | Structure and Dynamics of Thermosensitive pDNA Polyplexes Studied by Time-Resolved Fluorescence Spectroscopy. Biomacromolecules, 2020, 21, 73-88.                                                            | 5.4  | 5         |
| 334 | Acrylamides with hydrolytically labile carbonate ester side chains as versatile building blocks for<br>well-defined block copolymer micelles via RAFT polymerization. Polymer Chemistry, 2017, 8, 6544-6557. | 3.9  | 4         |
| 335 | Step-by-Step Synthesis of Monodisperse Methacrylamidoalkyl Oligolactates. Macromolecular Rapid<br>Communications, 2006, 27, 1312-1316.                                                                       | 3.9  | 3         |
| 336 | Optimization of the recombinant production and purification of a self-assembling peptide in Escherichia coli. Microbial Cell Factories, 2014, 13, 178.                                                       | 4.0  | 3         |
| 337 | In Vitro Evaluation of Antiâ€Aggregation and Degradation Behavior of PEGylated Polymeric Nanogels<br>under In Vivo Like Conditions. Macromolecular Bioscience, 2018, 18, 1700127.                            | 4.1  | 3         |
| 338 | Polymeric Micelles Employing Platinum(II) Linker for the Delivery of the Kinase Inhibitor Dactolisib.<br>Particle and Particle Systems Characterization, 2019, 36, 1900236.                                  | 2.3  | 3         |
| 339 | Modulating albumin-mediated transport of peptide-drug conjugates for antigen-specific Treg induction. Journal of Controlled Release, 2022, 348, 938-950.                                                     | 9.9  | 3         |
| 340 | Evaluation of the suitability of a Sprague Dawley rat model to assess intravenous iron preparations.<br>Journal of Pharmacological and Toxicological Methods, 2018, 91, 7-17.                                | 0.7  | 2         |
| 341 | Preparation of mRNA Polyplexes with Post-conjugated Endosome-Disruptive Peptides. Methods in<br>Molecular Biology, 2021, 2355, 275-286.                                                                      | 0.9  | 2         |
| 342 | Cationic Nanogels: Reduction-Sensitive Dextran Nanogels Aimed for Intracellular Delivery of Antigens<br>(Adv. Funct. Mater. 20/2015). Advanced Functional Materials, 2015, 25, 2992-2992.                    | 14.9 | 1         |

| #   | Article                                                                                                                                                     | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 343 | NanoDDS 2018: The 16th International Nanomedicine & Drug Delivery Symposium. Journal of Controlled Release, 2019, 310, 22-23.                               | 9.9 | 1         |
| 344 | Transform nanomedicine with breakthrough thinking?. Journal of Controlled Release, 2021, 330, 1130-1131.                                                    | 9.9 | 1         |
| 345 | Internalization and Transport of PEGylated Lipid-Based Mixed Micelles across Caco-2 Cells Mediated by Scavenger Receptor B1. Pharmaceutics, 2021, 13, 2022. | 4.5 | 1         |
| 346 | NanoDDS 2017: The 15th International Nanomedicine & Drug Delivery Symposium. Journal of Controlled<br>Release, 2018, 282, 1-2.                              | 9.9 | 0         |