Thurid S Gspann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5148347/publications.pdf Version: 2024-02-01

THUDID S CSDANN

#	Article	IF	CITATIONS
1	High thermal conductivities of carbon nanotube films and micro-fibres and their dependence on morphology. Carbon, 2017, 114, 160-168.	10.3	119
2	Spinning of carbon nanotube fibres using the floating catalyst high temperature route: purity issues and the critical role of sulphur. Faraday Discussions, 2014, 173, 47-65.	3.2	112
3	Aligned carbon nanotube–epoxy composites: the effect of nanotube organization on strength, stiffness, and toughness. Journal of Materials Science, 2016, 51, 10005-10025.	3.7	64
4	The mechanical and electrical properties of direct-spun carbon nanotube mats. Extreme Mechanics Letters, 2018, 21, 65-75.	4.1	59
5	Mechanical properties of carbon nanotube fibres: St Venant's principle at the limit and the role of imperfections. Carbon, 2015, 93, 1021-1033.	10.3	33
6	Extreme stretching of high G:D ratio carbon nanotube fibers using super-acid. Carbon, 2019, 153, 725-736.	10.3	25
7	Chirality-independent characteristic crystal length in carbon nanotube textiles measured by Raman spectroscopy. Carbon, 2017, 115, 672-680.	10.3	22
8	High throughput production of single-wall carbon nanotube fibres independent of sulfur-source. Nanoscale, 2019, 11, 18483-18495.	5.6	22
9	Quantifying alignment in carbon nanotube yarns and similar twoâ€dimensional anisotropic systems. Journal of Applied Polymer Science, 2021, 138, 50939.	2.6	17
10	Forecasting continuous carbon nanotube production in the floating catalyst environment. Chemical Engineering Journal, 2020, 390, 124497.	12.7	14
11	Photonic Sorting of Aligned, Crystalline Carbon Nanotube Textiles. Scientific Reports, 2017, 7, 12977.	3.3	13
12	A comparative study of the tensile failure of carbon nanotube, Dyneema and carbon fibre tows over six orders of strain rate. Carbon, 2020, 164, 407-421.	10.3	7
13	Applications, composites, and devices: general discussion. Faraday Discussions, 2014, 173, 429-443.	3.2	5
14	Catalyst-Mediated Enhancement of Carbon Nanotube Textiles by Laser Irradiation: Nanoparticle Sweating and Bundle Alignment. Catalysts, 2021, 11, 368.	3.5	5
15	Doping and Theory: general discussion. Faraday Discussions, 2014, 173, 233-256.	3.2	4
16	Synthesis in gas and liquid phase: general discussion. Faraday Discussions, 2014, 173, 115-135.	3.2	2
17	Triboluminescence flashes from high-speed ruptures in carbon nanotube Macro-Yarns. Materials Letters, 2018, 213, 298-302.	2.6	2
18	Artificial Neurons on Flexible Substrates: A Fully Printed Approach for Neuromorphic Sensing. Sensors, 2022, 22, 4000.	3.8	2

#	Article	IF	CITATIONS
19	Stress Transfer within CNT Fibres: A FEA Approach. Procedia Engineering, 2015, 109, 435-440.	1.2	1
20	Highâ€Resolution Onâ€Demand Nanostructures. Physica Status Solidi (A) Applications and Materials Science, 2020, 217, 1900688.	1.8	1
21	CNT fibres - yarns between the extremes. Materials Research Society Symposia Proceedings, 2015, 1752, 117-123.	0.1	0