List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5148264/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inclusion Problems. Applied Mechanics Reviews, 1996, 49, S118-S127.	10.1	97
2	Elastic Fields in Double Inhomogeneity by the Equivalent Inclusion Method. Journal of Applied Mechanics, Transactions ASME, 2001, 68, 3-10.	2.2	79
3	Interacting cracks and ellipsoidal inhomogeneities by the equivalent inclusion method. Journal of the Mechanics and Physics of Solids, 2003, 51, 945-960.	4.8	65
4	Love waves propagation in functionally graded piezoelectric materials with quadratic variation. Journal of Sound and Vibration, 2008, 313, 195-204.	3.9	63
5	Molecular dynamics simulation of crack propagation in fcc materials containing clusters of impurities. Mechanics of Materials, 2006, 38, 243-252.	3.2	62
6	Calculation of the Additional Constants for fcc Materials in Second Strain Gradient Elasticity: Behavior of a Nano-Size Bernoulli-Euler Beam With Surface Effects. Journal of Applied Mechanics, Transactions ASME, 2012, 79, .	2.2	56
7	Ab initio calculations of characteristic lengths of crystalline materials in first strain gradient elasticity. Mechanics of Materials, 2013, 61, 73-78.	3.2	52
8	Size-dependent interaction of an edge dislocation with an elliptical nano-inhomogeneity incorporating interface effects. International Journal of Solids and Structures, 2012, 49, 759-770.	2.7	49
9	A piezoelectric-inhomogeneity system with imperfect interface. International Journal of Engineering Science, 2006, 44, 291-311.	5.0	48
10	Surface/interface effects on elastic behavior of a screw dislocation in an eccentric core–shell nanowire. International Journal of Solids and Structures, 2012, 49, 1665-1675.	2.7	47
11	A thermoelasticity solution of sandwich structures with functionally graded coating. Composites Science and Technology, 2007, 67, 1073-1080.	7.8	45
12	Scattering of an anti-plane shear wave by an embedded cylindrical micro-/nano-fiber within couple stress theory with micro inertia. International Journal of Solids and Structures, 2015, 58, 73-90.	2.7	40
13	Overall behavior of composites with periodic multi-inhomogeneities. Mechanics of Materials, 2005, 37, 343-353.	3.2	38
14	A model for the evolution of concrete deterioration due to reinforcement corrosion. Mathematical and Computer Modelling, 2010, 52, 1403-1422.	2.0	36
15	A formulation for the characteristic lengths of fcc materials in first strain gradient elasticity via the Sutton–Chen potential. Philosophical Magazine, 2010, 90, 1893-1913.	1.6	36
16	A micromechanical study of rolling and sliding contacts in assemblies of oval granules. International Journal for Numerical and Analytical Methods in Geomechanics, 2003, 27, 403-424.	3.3	34
17	An FCM coated elastic solid under thermomechanical loading: a two dimensional linear elastic approach. Surface and Coatings Technology, 2006, 200, 4050-4064.	4.8	33
18	A combined first principles and analytical determination of the modulus of cohesion, surface energy, and the additional constants in the second strain gradient elasticity. International Journal of Solids and Structures, 2013, 50, 3967-3974.	2.7	33

#	Article	IF	CITATIONS
19	Interface effects on elastic behavior of an edge dislocation in a core–shell nanowire embedded to an infinite matrix. International Journal of Solids and Structures, 2013, 50, 1177-1186.	2.7	33
20	Surface and Interface Effects on Torsion of Eccentrically Two-Phase fcc Circular Nanorods: Determination of the Surface/Interface Elastic Properties via an Atomistic Approach. Journal of Applied Mechanics, Transactions ASME, 2011, 78, .	2.2	31
21	Piezoelectric composites with periodic multi-coated inhomogeneities. International Journal of Solids and Structures, 2010, 47, 2893-2904.	2.7	30
22	A piezoelectric medium containing a cylindrical inhomogeneity: Role of electric capacitors and mechanical imperfections. International Journal of Solids and Structures, 2007, 44, 6361-6381.	2.7	28
23	Axisymmetric time-harmonic response of a transversely isotropic substrate–coating system. International Journal of Engineering Science, 2007, 45, 272-287.	5.0	26
24	Prediction of the penetrated rust into the microcracks of concrete caused by reinforcement corrosion. Applied Mathematical Modelling, 2011, 35, 2529-2543.	4.2	26
25	Spectral equivalent inclusion method: Anisotropic cylindrical multi-inhomogeneities. Journal of the Mechanics and Physics of Solids, 2008, 56, 3565-3575.	4.8	25
26	Surface/interface effects on the formation of misfit dislocation in a core–shell nanowire. Philosophical Magazine, 2014, 94, 492-519.	1.6	25
27	Effects of couple stresses on anti-plane problems of piezoelectric media with inhomogeneities. European Journal of Mechanics, A/Solids, 2007, 26, 647-658.	3.7	24
28	A meshless approach for solution of Burgers' equation. Journal of Computational and Applied Mathematics, 2008, 220, 226-239.	2.0	24
29	Effect of surface stresses on elastic behavior of a screw dislocation inside the wall of a nanotube. Physica Status Solidi (B): Basic Research, 2011, 248, 1437-1441.	1.5	24
30	Disclination grain boundary model with plastic deformation by dislocations. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1995, 190, 1-7.	5.6	23
31	Analysis of displacement and strain fields of a screw dislocation in a nanowire using gradient elasticity theory. Scripta Materialia, 2008, 59, 368-371.	5.2	23
32	Elastic behavior of an edge dislocation inside the wall of a nanotube. Scripta Materialia, 2011, 64, 709-712.	5.2	23
33	A combined first principles and analytical treatment for determination of the surface elastic constants: application to Si(001) ideal and reconstructed surfaces. Philosophical Magazine Letters, 2012, 92, 7-19.	1.2	23
34	Elliptic inhomogeneities and inclusions in anti-plane couple stress elasticity with application to nano-composites. International Journal of Solids and Structures, 2009, 46, 2978-2987.	2.7	21
35	Green's functions of an exponentially graded transversely isotropic half-space. International Journal of Solids and Structures, 2010, 47, 1537-1545.	2.7	21
36	Surface elasticity revisited in the context of second strain gradient theory. Mechanics of Materials, 2016, 93, 220-237.	3.2	21

#	Article	IF	CITATIONS
37	Lateral translation of an inextensible circular membrane embedded in a transversely isotropic half-space. European Journal of Mechanics, A/Solids, 2013, 39, 134-143.	3.7	20
38	Mechanics and morphology of single-walled carbon nanotubes: from graphene to the elastica. Philosophical Magazine, 2013, 93, 2057-2088.	1.6	20
39	On thermoelastic fields of a multi-phase inhomogeneity system with perfectly/imperfectly bonded interfaces. International Journal of Solids and Structures, 2008, 45, 5831-5843.	2.7	19
40	Surface/interface effect on the scattering of Love waves by a nano-size surface-breaking crack within an ultra-thin layer bonded to an elastic half-space. International Journal of Solids and Structures, 2017, 108, 63-73.	2.7	19
41	Analysis of stress field of a screw dislocation inside an embedded nanowire using strain gradient elasticity. Scripta Materialia, 2009, 61, 355-358.	5.2	18
42	Surface/interface effects on elastic behavior of an edge dislocation in the shell of a core–shell nanowire. European Journal of Mechanics, A/Solids, 2013, 41, 86-100.	3.7	18
43	Interface effect on the formation of a dipole of screw misfit dislocations in an embedded nanowire with uniform shear eigenstrain field. European Journal of Mechanics, A/Solids, 2015, 51, 154-159.	3.7	18
44	Elastic moduli tensors, ideal strength, and morphology of stanene based on an enhanced continuum model and first principles. Mechanics of Materials, 2017, 110, 1-15.	3.2	18
45	Scattering of SH-waves by an elliptic cavity/crack beneath the interface between functionally graded and homogeneous half-spaces via multipole expansion method. Journal of Sound and Vibration, 2018, 435, 372-389.	3.9	18
46	A screw dislocation near a circular nano-inhomogeneity in gradient elasticity. International Journal of Solids and Structures, 2010, 47, 741-750.	2.7	17
47	Wedge disclinations in the shell of a core–shell nanowire within the surface/interface elasticity. Mechanics of Materials, 2014, 68, 45-63.	3.2	16
48	Toupin–Mindlin first strain gradient theory revisited for cubic crystals of hexoctahedral class: Analytical expression of the material parameters in terms of the atomic force constants and evaluation via ab initio DFT. Mechanics of Materials, 2018, 123, 19-29.	3.2	16
49	Three-dimensional analysis of piezocomposite plates with arbitrary geometry and boundary conditions. International Journal of Solids and Structures, 2003, 40, 4837-4858.	2.7	15
50	A general unified treatment of lamellar inhomogeneities. Engineering Fracture Mechanics, 2007, 74, 1499-1510.	4.3	15
51	A novel nonlinear constitutive relation for graphene and its consequence for developing closed-form expressions for Young's modulus and critical buckling strain of single-walled carbon nanotubes. Acta Mechanica, 2011, 222, 91-101.	2.1	15
52	Boussinesq indentation of a transversely isotropic half-space reinforced by a buried inextensible membrane. Applied Mathematical Modelling, 2014, 38, 2163-2172.	4.2	15
53	Shear horizontal surface acoustic waves in functionally graded magneto-electro-elastic half-space. Journal of Engineering Mathematics, 2016, 97, 83-100.	1.2	15
54	Thermoelastic Fields of a Functionally Graded Coated Inhomogeneity With Sliding/Perfect Interfaces. Journal of Applied Mechanics, Transactions ASME, 2007, 74, 389-398.	2.2	14

#	Article	IF	CITATIONS
55	A unified approach to the mathematical analysis of generalized RKPM, gradient RKPM, and GMLS. Computer Methods in Applied Mechanics and Engineering, 2011, 200, 540-576.	6.6	14
56	Tensor spherical harmonics theories on the exact nature of the elastic fields of a spherically anisotropic multi-inhomogeneous inclusion. Journal of the Mechanics and Physics of Solids, 2013, 61, 1124-1143.	4.8	14
57	Determination of the scattered fields of an SH-wave by an eccentric coating-fiber ensemble using DEIM. International Journal of Engineering Science, 2008, 46, 1136-1146.	5.0	13
58	Gradient reproducing kernel particle method. Journal of Mechanics of Materials and Structures, 2008, 3, 127-152.	0.6	13
59	3D elastodynamic fields of non-uniformly coated obstacles: Notion of eigenstress and eigenbody-force fields. Mechanics of Materials, 2009, 41, 989-999.	3.2	13
60	Surface/interface effect on the scattered fields of an anti-plane shear wave in an infinite medium by a concentric multi-coated nanofiber/nanotube. European Journal of Mechanics, A/Solids, 2012, 32, 21-31.	3.7	13
61	Fully enriched weight functions in mesh-free methods for the analysis of linear elastic fracture mechanics problems. Engineering Analysis With Boundary Elements, 2014, 43, 1-18.	3.7	13
62	Surface characterization of face-centered cubic crystals. Mechanics of Materials, 2019, 129, 15-22.	3.2	13
63	Nonlinear flexure of Timoshenko–Ehrenfest nano-beams via nonlocal integral elasticity. European Physical Journal Plus, 2020, 135, 1.	2.6	13
64	An Analytical Approach to Study the Intraoperative Fractures of Femoral Shaft During Total Hip Arthroplasty. Journal of Biomechanical Engineering, 2013, 135, 041004.	1.3	12
65	Scattering of SH-waves by a nano-fiber beneath the interface of two bonded half-spaces within surface/interface elasticity via multipole expansion. International Journal of Solids and Structures, 2018, 130-131, 258-279.	2.7	12
66	Torsional surface wave propagation in a transversely isotropic FG substrate with piezoelectric over-layer within surface/interface theory. Acta Mechanica, 2020, 231, 2203-2216.	2.1	12
67	A semi-analytical method for piezocomposite structures with arbitrary interfaces. Computer Methods in Applied Mechanics and Engineering, 2005, 194, 4588-4604.	6.6	11
68	Composites with superspherical inhomogeneities. Philosophical Magazine Letters, 2009, 89, 439-451.	1.2	11
69	Ellipsoidal Domains: Piecewise Nonuniform and Impotent Eigenstrain Fields. Journal of Elasticity, 2006, 86, 1-18.	1.9	10
70	The effect of the physical properties of the substrate on the kinetics of cell adhesion and crawling studied by an axisymmetric diffusion-energy balance coupled model. Soft Matter, 2015, 11, 3693-3705.	2.7	10
71	Effective shear modulus of solids reinforced by randomly oriented-/aligned-elliptic nanofibers in couple stress elasticity. Composites Part B: Engineering, 2017, 117, 150-164.	12.0	10
72	Crystallography and surface effects on the propagation of Love and Rayleigh surface waves in fcc semi-infinite solids. International Journal of Solids and Structures, 2018, 138, 109-117.	2.7	10

#	Article	IF	CITATIONS
73	Intergranular Crack Nucleation in Bicrystalline Materials Under Fatigue. Journal of Applied Mechanics, Transactions ASME, 1996, 63, 788-795.	2.2	9
74	The scattering of electro-elastic waves by a spherical piezoelectric particle in a polymer matrix. International Journal of Engineering Science, 2006, 44, 633-649.	5.0	9
75	A remedy to gradient type constraint dilemma encountered in RKPM. Advances in Engineering Software, 2007, 38, 229-243.	3.8	9
76	Axisymmetric contact of a rigid inclusion embedded at the interface of a piezoelectric bimaterial. Quarterly Journal of Mechanics and Applied Mathematics, 2009, 62, 281-295.	1.3	8
77	Electroelastic fields in interacting piezoelectric inhomogeneities by the electromechanical equivalent inclusion method. Smart Materials and Structures, 2010, 19, 035025.	3.5	8
78	Response of reinforced concrete structures to macrocell corrosion of reinforcements. Part II: After propagation of microcracks via a numerical approach. Nuclear Engineering and Design, 2012, 242, 7-18.	1.7	8
79	First principles molecular dynamics studies of elastic constants, ideal tensile strength, chemistry of crack initiation, and surface and cohesive energies in amorphous silicon. Philosophical Magazine, 2014, 94, 2913-2936.	1.6	8
80	The electro-elastic scattered fields of an SH-wave by an eccentric two-phase circular piezoelectric sensor in an unbounded piezoelectric medium. Mechanics of Materials, 2014, 75, 1-12.	3.2	8
81	An exact analysis for the hoop elasticity and pressure-induced twist of CNT-nanovessels and CNT-nanopipes. Mechanics of Materials, 2015, 82, 47-62.	3.2	8
82	Inverse scattering problem of reconstruction of an embedded micro-/nano-size scatterer within couple stress theory with micro inertia. Mechanics of Materials, 2016, 103, 123-134.	3.2	8
83	Effective shear modulus of solids reinforced by randomly oriented- / aligned-elliptic multi-coated nanofibers in micropolar elasticity. Composites Part B: Engineering, 2018, 143, 197-206.	12.0	8
84	Some Basic Theoretical and Experimental Results on Micromechanics of Granular Flow. Studies in Applied Mechanics, 1988, 20, 253-262.	0.4	8
85	Numerical analysis of sedimentation and consolidation by the moving finite element method. International Journal for Numerical and Analytical Methods in Geomechanics, 1993, 17, 753-769.	3.3	7
86	Effective Moduli of Coated Particulate Composites with BCC Structure at High Concentration. Journal of Engineering Mechanics - ASCE, 2006, 132, 882-888.	2.9	7
87	Computational modeling of the interaction of two edge cracks, and two edge cracks interacting with a nanovoid, via an atomistic finite element method. Computational Materials Science, 2008, 42, 186-193.	3.0	7
88	Ellipsoidal Domain with Piecewise Nonuniform Eigenstrain Field in One of Joined Isotropic Half-Spaces. Journal of Elasticity, 2010, 98, 117-140.	1.9	7
89	An energetically consistent annular crack in a piezoelectric medium. Engineering Fracture Mechanics, 2010, 77, 819-831.	4.3	7
90	The scattering of P-waves by a piezoelectric particle with FGPM interfacial layers in a polymer matrix. International Journal of Solids and Structures, 2010, 47, 2390-2397.	2.7	7

#	Article	IF	CITATIONS
91	Response of reinforced concrete structures to macrocell corrosion of reinforcements. Part I: Before propagation of microcracks via an analytical approach. Nuclear Engineering and Design, 2011, 241, 4874-4892.	1.7	7
92	Wedge disclination dipole in an embedded nanowire within the surface/interface elasticity. Journal of the Mechanical Behavior of Materials, 2013, 22, 161-168.	1.8	7
93	An enhanced continuum modeling of the ideal strength and the angle of twist in tensile behavior of single-walled carbon nanotubes. Journal of Applied Physics, 2013, 114, .	2.5	7
94	Three-dimensional free vibration of arbitrarily shaped laminated micro-plates with sliding interfaces with in couple stress theory. Journal of Sound and Vibration, 2015, 339, 176-195.	3.9	7
95	A large-deformation thin plate theory with application to one-atom-thick layers. Journal of the Mechanics and Physics of Solids, 2016, 87, 65-85.	4.8	7
96	Mindlin–Eringen anisotropic micromorphic elasticity and lattice dynamics representation. Philosophical Magazine, 2020, 100, 157-193.	1.6	7
97	Weakly nonlocal micromorphic elasticity for diamond structures vis-Ã-vis lattice dynamics. Mechanics of Materials, 2020, 147, 103365.	3.2	7
98	Inclusion problems associated with thin fcc films: Linkage between eigenstrain and inter-atomic potential. Mechanics of Materials, 2007, 39, 803-818.	3.2	6
99	Elastic solids with high concentration of arbitrarily oriented multiphase particles. Acta Mechanica, 2007, 189, 125-139.	2.1	6
100	Interacting functionally graded quantum wires/quantum dots with arbitrary shapes and general anisotropy within a distinct piezoelectric matrix. Journal of the Mechanical Behavior of Materials, 2014, 23, 1-14.	1.8	6
101	Scattering of transverse surface waves by a piezoelectric fiber in a piezoelectric half-space with exponentially varying electromechanical properties. Zeitschrift Fur Angewandte Mathematik Und Physik, 2019, 70, 1.	1.4	6
102	On the exact nature of the coupled-fields of magneto-electro-elastic ellipsoidal inclusions with non-uniform eigenfields and general anisotropy. Mechanics of Materials, 2019, 128, 89-104.	3.2	6
103	The double slip plane model for the study of short cracks. Mechanics of Materials, 1995, 20, 195-208.	3.2	5
104	Three-Dimensional Free Vibration Analysis of Multiphase Piezocomposite Structures. Journal of Engineering Mechanics - ASCE, 2006, 132, 871-881.	2.9	5
105	Effects of Interface Conditions on Thermo-Mechanical Fields of Multi-Phase Nano-Fibers/Particles. Journal of Thermal Stresses, 2009, 32, 1166-1180.	2.0	5
106	Elastic fields of interacting point defects within an ultra-thin fcc film bonded to a rigid substrate. Open Engineering, 2013, 3, .	1.6	5
107	A Spectral Theory Formulation for Elastostatics by Means of Tensor Spherical Harmonics. Journal of Elasticity, 2013, 111, 67-89.	1.9	5
108	Variational bounds and overall shear modulus of nano-composites with interfacial damage in anti-plane couple stress elasticity. International Journal of Damage Mechanics, 2020, 29, 246-271.	4.2	5

#	Article	IF	CITATIONS
109	Mechanics of carbon-coated silicon nanowire via second strain gradient theory. European Journal of Mechanics, A/Solids, 2020, 81, 103943.	3.7	5
110	Analysis of two-phase flow of compressible immiscible fluids through nondeformable porous media using moving finite elements. Transport in Porous Media, 1993, 10, 203-219.	2.6	4
111	An accurate semi-analytical method for an arbitrarily oriented edge or interior crack in an anisotropic homogeneous elastic solid. European Journal of Mechanics, A/Solids, 2014, 45, 133-142.	3.7	4
112	Shear horizontal surface acoustic waves in a magneto-electro-elastic system. Journal of the Mechanical Behavior of Materials, 2016, 25, 1-13.	1.8	4
113	Eccentric annular crack under general nonuniform internal pressure. Journal of the Mechanical Behavior of Materials, 2016, 25, 69-76.	1.8	4
114	Novel theories on magneto-electro-elastic ellipsoidal multi-inclusions and inhomogeneities and associated impotent fields. Mechanics of Materials, 2020, 143, 103201.	3.2	4
115	Interface effects on the electromagnetic radiation emanating from an embedded piezoelectric nano-fiber incident upon by SH-waves. Wave Motion, 2020, 94, 102513.	2.0	4
116	Equilibrium of a tip weighted curved sheet on an inclined plane. Acta Mechanica, 1984, 53, 173-181.	2.1	3
117	A study of nanovoid, Griffith–Inglis crack, cohesive crack, and some associated interaction problems in fcc materials via the many body atomic scale FEM. Computational Materials Science, 2009, 45, 275-284.	3.0	3
118	Comment on "Annular inhomogeneities with eigenstrain and interphase modeling―[2014, J. Mech. Phys. Solids 64, 468–482]. Journal of the Mechanics and Physics of Solids, 2014, 73, 1-2.	4.8	3
119	Cap tuning and effective electron correlation energy in amorphous silicon: A first principles density functional theory-based molecular dynamics study. Computational Materials Science, 2015, 102, 110-118.	3.0	3
120	Scattering of plane elastic waves by a multi-coated nanofiber with deformable interfaces. International Journal of Solids and Structures, 2018, 141-142, 195-218.	2.7	3
121	Second strain gradient theory in orthogonal curvilinear coordinates: Prediction of the relaxation of a solid nanosphere and embedded spherical nanocavity. Applied Mathematical Modelling, 2019, 76, 669-698.	4.2	3
122	Discrete Kernel Functions for fcc Crystals Within Eringen's Nonlocal Theory of Elasticity. Journal of Elasticity, 2021, 143, 1-30.	1.9	3
123	Elastic/piezoelectric solids with electro-mechanical singular surfaces. Computational Mechanics, 2007, 40, 547-567.	4.0	2
124	A lamellar inhomogeneity near a multiphase reinforcement. Acta Mechanica, 2009, 206, 39-52.	2.1	2
125	A general treatment of piezoelectric double-inhomogeneities and their associated interaction problems. Acta Mechanica, 2011, 220, 167-182.	2.1	2
126	Axisymmetric Problem of Energetically Consistent Interacting Annular and Penny-Shaped Cracks in Piezoelectric Materials. Journal of Applied Mechanics, Transactions ASME, 2011, 78, .	2.2	2

#	Article	IF	CITATIONS
127	A transversely isotropic medium containing a penny-shaped crack subjected to a non-uniform axisymmetric loading via an anchored smooth rigid disk. Applied Mathematical Modelling, 2017, 45, 491-504.	4.2	2
128	The role of strain on the quantum spin hall effect and band inversion in stanene. Computational Condensed Matter, 2017, 10, 1-9.	2.1	2
129	An embedded couple stress micro-/nano-obstacle with micro-inertia incident upon by SH-waves. Acta Mechanica, 2018, 229, 3333-3354.	2.1	2
130	Interaction of a screw dislocation and an embedded nonuniformly coated circular fiber with imperfect interfaces. International Journal of Solids and Structures, 2020, 182-183, 295-306.	2.7	2
131	Effective moduli and characteristic lengths of micropolar media with dense periodic distribution of ellipsoidal nano-/micro-inhomogeneities. European Journal of Mechanics, A/Solids, 2021, 85, 104103.	3.7	2
132	Diffusion of a self-interstitial atom in an ultrathin fcc film bonded to a rigid substrate. Journal of the Mechanical Behavior of Materials, 2013, 21, 161-168.	1.8	2
133	Band-structure calculation of SH-waves in 1D hypersonic nano-sized phononic crystals with deformable interfaces. Mechanics of Materials, 2022, 171, 104359.	3.2	2
134	Torsion of an eccentrically two-phase circular nanobar. , 2010, , .		1
135	A combined first principles and Mohr-Coulomb criterion for the determination of the nanohardness of amorphous silicon. Journal of the Mechanical Behavior of Materials, 2015, 24, 145-151.	1.8	1
136	Elastostatic Fields of an Embedded Circular Rigid Nano/Micro-Fiber with Interfacial Damage in Anti-Plane Couple Stress Elasticity. Applied Mechanics and Materials, 0, 784, 80-85.	0.2	1
137	A screw dislocation near a damaged arbitrary inhomogeneity–matrix interface. International Journal of Damage Mechanics, 2020, 29, 272-296.	4.2	1
138	Dual ideal shear strengths for chiral single-walled carbon nanotubes. International Journal of Non-Linear Mechanics, 2020, 120, 103382.	2.6	1
139	Effective anti-plane moduli of couple stress composites containing elliptic multi-coated nano-fibers with interfacial damage and variational bounds. International Journal of Damage Mechanics, 2021, 30, 1351-1376.	4.2	1
140	Exact Diffusion-Induced Elastic Fields of a Spherical Core-Shell Nano-Electrode Li-Ion Battery via Spectral Theory. Journal of the Electrochemical Society, 2020, 167, 130540.	2.9	1
141	Surface/interface effect on the propagation of high-frequency SH surface waves in an ultra-thin FGP over-layer bonded to a substrate. Acta Mechanica, 2021, 232, 4677.	2.1	1
142	An Embedded Elliptic Nano-Fiber in Anti-Plane Strain Couple Stress Elasticity. , 2008, , .		0
143	Periodically Grown Quantum Nanostructures with Arbitrary Geometries: Periodicity Effects on the Induced Electro-elastic Fields. , 2015, 11, 275-281.		0
144	Nonlocal hcp kernel functions based on ab initio calculations: Pertinent dislocation problems revisited. Mechanics of Materials, 2021, 160, 103904.	3.2	0