Henrique J Cardoso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5148231/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Revisiting prostate cancer metabolism: From metabolites to disease and therapy. Medicinal Research Reviews, 2021, 41, 1499-1538.	5.0	17
2	Glutaminolysis is a metabolic route essential for survival and growth of prostate cancer cells and a target of 51±-dihydrotestosterone regulation. Cellular Oncology (Dordrecht), 2021, 44, 385-403.	2.1	10
3	Sweet Cherries as Anti-Cancer Agents: From Bioactive Compounds to Function. Molecules, 2021, 26, 2941.	1.7	12
4	Sweet Cherry Extract Targets the Hallmarks of Cancer in Prostate Cells: Diminished Viability, Increased Apoptosis and Suppressed Glycolytic Metabolism. Nutrition and Cancer, 2020, 72, 917-931.	0.9	10
5	The peculiarities of cancer cell metabolism: A route to metastasization and a target for therapy. European Journal of Medicinal Chemistry, 2019, 171, 343-363.	2.6	19
6	Tyrosine kinase inhibitor imatinib modulates the viability and apoptosis of castrate-resistant prostate cancer cells dependently on the glycolytic environment. Life Sciences, 2019, 218, 274-283.	2.0	7
7	The Role of GPER Signaling in Carcinogenesis: A Focus on Prostate Cancer. , 2018, , 59-117.		3
8	The stem cell factor (SCF)/c-KIT system in carcinogenesis of reproductive tissues: What does the hormonal regulation tell us?. Cancer Letters, 2017, 405, 10-21.	3.2	14
9	The stem cell factor (SCF)/c-KIT signalling in testis and prostate cancer. Journal of Cell Communication and Signaling, 2017, 11, 297-307.	1.8	36
10	Estrogens down-regulate the stem cell factor (SCF)/c-KIT system in prostate cells: Evidence of antiproliferative and proapoptotic effects. Biochemical Pharmacology, 2016, 99, 73-87.	2.0	17
11	Suppressed glycolytic metabolism in the prostate of transgenic rats overexpressing calcium-binding protein regucalcin underpins reduced cell proliferation. Transgenic Research, 2016, 25, 139-148.	1.3	3
12	The Emerging Role of Regucalcin as a Tumor Suppressor: Facts and Views. Current Molecular Medicine, 2016, 16, 607-619.	0.6	9
13	Oestrogens as apoptosis regulators in mammalian testis: angels or devils?. Expert Reviews in Molecular Medicine, 2015, 17, e2.	1.6	26
14	Paradoxical and contradictory effects of imatinib in two cell line models of hormone-refractory prostate cancer. Prostate, 2015, 75, 923-935.	1.2	20
15	The SCF/c-KIT system in the male: Survival strategies in fertility and cancer. Molecular Reproduction and Development, 2014, 81, 1064-1079.	1.0	31
16	Hormonal regulation of c-KIT receptor and its ligand: implications for human infertility?. Progress in Histochemistry and Cytochemistry, 2014, 49, 1-19.	5.1	18