Barbara Imperiali

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5148000/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of N-linked glycosylation on glycopeptide and glycoprotein structure. Current Opinion in Chemical Biology, 1999, 3, 643-649.	6.1	367
2	Exploiting Polypeptide Motifs for the Design of Selective Cu(II) Ion Chemosensors. Journal of the American Chemical Society, 1998, 120, 609-610.	13.7	315
3	Protein oligomerization: How and why. Bioorganic and Medicinal Chemistry, 2005, 13, 5013-5020.	3.0	308
4	Asparagine-linked protein glycosylation: from eukaryotic to prokaryotic systems. Glycobiology, 2006, 16, 91R-101R.	2.5	300
5	Monitoring protein interactions and dynamics with solvatochromic fluorophores. Trends in Biotechnology, 2010, 28, 73-83.	9.3	260
6	Inhibition of serine proteases by peptidyl fluoromethyl ketones. Biochemistry, 1986, 25, 3760-3767.	2.5	252
7	Fluorescent Chemosensors for Divalent Zinc Based on Zinc Finger Domains. Enhanced Oxidative Stability, Metal Binding Affinity, and Structural and Functional Characterization. Journal of the American Chemical Society, 1997, 119, 3443-3450.	13.7	218
8	Stereoselective aldol condensation. Use of chiral boron enolates. Journal of the American Chemical Society, 1981, 103, 1566-1568.	13.7	213
9	A Versatile Amino Acid Analogue of the Solvatochromic Fluorophore 4- <i>N,N</i> -Dimethylamino-1,8-naphthalimide: A Powerful Tool for the Study of Dynamic Protein Interactions. Journal of the American Chemical Society, 2008, 130, 13630-13638.	13.7	212
10	Derivatives of 8-Hydroxy-2-methylquinoline Are Powerful Prototypes for Zinc Sensors in Biological Systems. Journal of the American Chemical Society, 2001, 123, 5160-5161.	13.7	203
11	A multiplexed homogeneous fluorescence-based assay for protein kinase activity in cell lysates. Nature Methods, 2005, 2, 277-284.	19.0	202
12	Modular and Tunable Chemosensor Scaffold for Divalent Zinc. Journal of the American Chemical Society, 2003, 125, 10591-10597.	13.7	198
13	Design and Evaluation of a Peptidyl Fluorescent Chemosensor for Divalent Zinc. Journal of the American Chemical Society, 1996, 118, 3053-3054.	13.7	194
14	Versatile Fluorescence Probes of Protein Kinase Activity. Journal of the American Chemical Society, 2003, 125, 14248-14249.	13.7	193
15	Protein Alignment by a Coexpressed Lanthanide-Binding Tag for the Measurement of Residual Dipolar Couplings. Journal of the American Chemical Society, 2003, 125, 13338-13339.	13.7	193
16	The Expanding Horizons of Asparagine-Linked Glycosylation. Biochemistry, 2011, 50, 4411-4426.	2.5	191
17	Modulation of protein structure and function by asparagine-linked glycosylation. Chemistry and Biology, 1996, 3, 803-812.	6.0	182
18	Lanthanide-Binding Tags as Versatile Protein Coexpression Probes. ChemBioChem, 2003, 4, 265-271.	2.6	158

#	Article	IF	CITATIONS
19	Structural Origin of the High Affinity of a Chemically Evolved Lanthanide-Binding Peptide. Angewandte Chemie - International Edition, 2004, 43, 3682-3685.	13.8	158
20	A Powerful Combinatorial Screen to Identify High-Affinity Terbium(III)-Binding Peptides. ChemBioChem, 2003, 4, 272-276.	2.6	144
21	Double-Lanthanide-Binding Tags:  Design, Photophysical Properties, and NMR Applications. Journal of the American Chemical Society, 2007, 129, 7106-7113.	13.7	142
22	Engineering Encodable Lanthanide-Binding Tags into Loop Regions of Proteins. Journal of the American Chemical Society, 2011, 133, 808-819.	13.7	132
23	Chemical approaches for investigating phosphorylation in signal transduction networks. Trends in Cell Biology, 2005, 15, 502-510.	7.9	128
24	Effects of Glycosylation on Peptide Conformation:Â A Synergistic Experimental and Computational Study. Journal of the American Chemical Society, 2004, 126, 8421-8425.	13.7	124
25	Lanthanide-Binding Tags as Luminescent Probes for Studying Protein Interactions. Journal of the American Chemical Society, 2006, 128, 7346-7352.	13.7	124
26	In vitro assembly of the undecaprenylpyrophosphate-linked heptasaccharide for prokaryotic N-linked glycosylation. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14255-14259.	7.1	123
27	From Peptide to Protein:  Comparative Analysis of the Substrate Specificity of N-Linked Glycosylation in C. jejuni. Biochemistry, 2007, 46, 5579-5585.	2.5	113
28	At the membrane frontier: A prospectus on the remarkable evolutionary conservation of polyprenols and polyprenyl-phosphates. Archives of Biochemistry and Biophysics, 2012, 517, 83-97.	3.0	113
29	Substrate assistance in the mechanism of family 18 chitinases: theoretical studies of potential intermediates and inhibitors 1 1Edited by B. Honig. Journal of Molecular Biology, 1998, 280, 913-923.	4.2	110
30	Lanthanide-tagged proteins—an illuminating partnership. Current Opinion in Chemical Biology, 2010, 14, 247-254.	6.1	110
31	Direct Biochemical Evidence for the Utilization of UDP-bacillosamine by PglC, an Essential Glycosyl-1-phosphate Transferase in theCampylobacter jejuniN-Linked Glycosylation Pathwayâ€. Biochemistry, 2006, 45, 5343-5350.	2.5	104
32	A molecular basis for glycosylation-induced conformational switching. Chemistry and Biology, 1998, 5, 427-437.	6.0	103
33	Biomimetic divalent ligands for the acute disruption of synaptic AMPAR stabilization. Nature Chemical Biology, 2011, 7, 81-91.	8.0	103
34	Oligosaccharyl transferase: gatekeeper to the secretory pathway. Current Opinion in Chemical Biology, 2002, 6, 844-850.	6.1	102
35	Asparagine-linked glycosylation: Specificity and function of oligosaccharyl transferase. Bioorganic and Medicinal Chemistry, 1995, 3, 1565-1578.	3.0	101
36	In Vitro Biosynthesis of UDP-N,Nâ€~-Diacetylbacillosamine by Enzymes of the Campylobacter jejuni General Protein Glycosylation System. Biochemistry, 2006, 45, 13659-13669.	2.5	100

#	Article	IF	CITATIONS
37	Structure determination of a Galectinâ€3–carbohydrate complex using paramagnetismâ€based NMR constraints. Protein Science, 2008, 17, 1220-1231.	7.6	96
38	Recognition-Domain Focused Chemosensors: Versatile and Efficient Reporters of Protein Kinase Activity. Journal of the American Chemical Society, 2008, 130, 12821-12827.	13.7	96
39	New Synthetic Amino Acids for the Design and Synthesis of Peptide-Based Metal Ion Sensors. Journal of Organic Chemistry, 1996, 61, 8940-8948.	3.2	95
40	Metallopeptide Design:  Tuning the Metal Cation Affinities with Unnatural Amino Acids and Peptide Secondary Structure. Journal of the American Chemical Society, 1996, 118, 11349-11356.	13.7	92
41	Chemoenzymic synthesis of 2-amino-3-(2,2'-bipyridinyl)propanoic acids. Journal of Organic Chemistry, 1993, 58, 1613-1616.	3.2	90
42	Chemoenzymatic Synthesis of Glycopeptides with PglB, a Bacterial Oligosaccharyl Transferase from Campylobacter jejuni. Chemistry and Biology, 2005, 12, 1311-1316.	6.0	89
43	Caged phosphopeptides reveal a temporal role for 14-3-3 in G1 arrest and S-phase checkpoint function. Nature Biotechnology, 2004, 22, 993-1000.	17.5	88
44	A new environment-sensitive fluorescent amino acid for Fmoc-based solid phase peptide synthesis. Organic and Biomolecular Chemistry, 2004, 2, 1965-1966.	2.8	88
45	Covalent Modification of Synthetic Hydrogels with Bioactive Proteins via Sortase-Mediated Ligation. Biomacromolecules, 2015, 16, 2316-2326.	5.4	88
46	Protein Glycosylation:  The Clash of the Titans. Accounts of Chemical Research, 1997, 30, 452-459.	15.6	86
47	Fluorescent Caged Phosphoserine Peptides as Probes to Investigate Phosphorylation-Dependent Protein Associations. Journal of the American Chemical Society, 2003, 125, 10150-10151.	13.7	86
48	Dynamic and specific interaction between synaptic NR2-NMDA receptor and PDZ proteins. Proceedings of the United States of America, 2010, 107, 19561-19566.	7.1	86
49	Fluorogenic probes for monitoring peptide binding to class II MHC proteins in living cells. Nature Chemical Biology, 2007, 3, 222-228.	8.0	85
50	Fluorescent Amino Acids: Modular Building Blocks for the Assembly of New Tools for Chemical Biology. ChemBioChem, 2013, 14, 788-799.	2.6	85
51	Economy in Protein Design: Evolution of a Metal-Independent ββα Motif Based on the Zinc Finger Domains. Journal of the American Chemical Society, 1996, 118, 3073-3081.	13.7	79
52	Biochemical Characterization of the O-Linked Glycosylation Pathway in <i>Neisseria gonorrhoeae</i> Responsible for Biosynthesis of Protein Glycans Containing <i>N</i> , <i>N</i> ′-Diacetylbacillosamine. Biochemistry, 2011, 50, 4936-4948.	2.5	79
53	Sequential Activation and Deactivation of Protein Function Using Spectrally Differentiated Caged Phosphoamino Acids. Journal of the American Chemical Society, 2011, 133, 11038-11041.	13.7	79
54	Double-Lanthanide-Binding Tags for Macromolecular Crystallographic Structure Determination. Journal of the American Chemical Society, 2007, 129, 7114-7120.	13.7	78

#	Article	IF	CITATIONS
55	Differences between Asn-Xaa-Thr-containing peptides: a comparison of solution conformation and substrate behavior with oligosaccharyltransferase. Biochemistry, 1991, 30, 4374-4380.	2.5	77
56	Optimal Sox-based fluorescent chemosensor design for serine/threonine protein kinases. Analytical Biochemistry, 2006, 352, 198-207.	2.4	77
57	A versatile synthesis of peptidyl fluoromethyl ketones. Tetrahedron Letters, 1986, 27, 135-138.	1.4	76
58	The interplay of glycosylation and disulfide formation influences fibrillization in a prion protein fragment. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 7593-7598.	7.1	76
59	Conformational Switching by Asparagine-Linked Glycosylation. Journal of the American Chemical Society, 1997, 119, 2295-2296.	13.7	74
60	Design and NMR analyses of compact, independently folded BBA motifs. Folding & Design, 1998, 3, 95-103.	4.5	72
61	Perturbing the folding energy landscape of the bacterial immunity protein Im7 by site-specific N-linked glycosylation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 22528-22533.	7.1	72
62	The Renaissance of Bacillosamine and Its Derivatives: Pathway Characterization and Implications in Pathogenicity. Biochemistry, 2014, 53, 624-638.	2.5	72
63	Photolytic Control of Peptide Self-Assembly. Journal of the American Chemical Society, 2003, 125, 7530-7531.	13.7	69
64	Semisynthesis of a Glycosylated Im7 Analogue for Protein Folding Studies. Journal of the American Chemical Society, 2005, 127, 12882-12889.	13.7	67
65	Stereoselective synthesis and peptide incorporation of (S)alphaamino-(2,2'-bipyridine)-6-propanoic acid. Journal of Organic Chemistry, 1992, 57, 757-759.	3.2	65
66	Caged Phosphoproteins. Journal of the American Chemical Society, 2005, 127, 846-847.	13.7	64
67	In Vitro Evidence for the Dual Function of Alg2 and Alg11:Â Essential Mannosyltransferases in N-Linked Glycoprotein Biosynthesisâ€. Biochemistry, 2006, 45, 9593-9603.	2.5	64
68	Stereoselective Synthesis of Fluorescent α-Amino Acids Containing Oxine (8-Hydroxyquinoline) and Their Peptide Incorporation in Chemosensors for Divalent Zinc. Journal of Organic Chemistry, 1998, 63, 6727-6731.	3.2	63
69	Investigating Bacterial N-Linked Glycosylation:Â Synthesis and Glycosyl Acceptor Activity of the Undecaprenyl Pyrophosphate-Linked Bacillosamine. Journal of the American Chemical Society, 2005, 127, 13766-13767.	13.7	63
70	Probing the Effect of the Outer Saccharide Residues ofN-Linked Glycans on Peptide Conformation. Journal of the American Chemical Society, 2001, 123, 6187-6188.	13.7	62
71	Synthesis of ansamycins: the ansa chain of rifamycin S. Journal of the American Chemical Society, 1982, 104, 5528-5531.	13.7	61
72	A General Screening Strategy for Peptide-Based Fluorogenic Ligands: Probes for Dynamic Studies of PDZ Domain-Mediated Interactions. Journal of the American Chemical Society, 2009, 131, 6680-6682.	13.7	57

#	Article	IF	CITATIONS
73	Sulfhydryl Modification of the Yeast Wbp1p Inhibits Oligosaccharyl Transferase Activity. Biochemistry, 1995, 34, 4179-4185.	2.5	56
74	Campylobacter jejuni PglH Is a Single Active Site Processive Polymerase that Utilizes Product Inhibition to Limit Sequential Glycosyl Transfer Reactions. Biochemistry, 2009, 48, 2807-2816.	2.5	56
75	Oligomerization of Uniquely Folded Mini-Protein Motifs: Development of a Homotrimeric βl²Î± Peptide. Journal of the American Chemical Society, 2001, 123, 3885-3891.	13.7	54
76	Asymmetric Synthesis of a New 8-Hydroxyquinoline-Derived α-Amino Acid and Its Incorporation in a Peptidylsensor for Divalent Zinc. Journal of Organic Chemistry, 2001, 66, 3224-3228.	3.2	53
77	Enantioselective synthesis and application of the highly fluorescent and environment-sensitive amino acid 6-(2-dimethylaminonaphthoyl) alanine (DANA)Electronic supplementary information (ESI) available: experimental details. See http://www.rsc.org/suppdata/cc/b2/b205224e/. Chemical	4.1	53
78	Thiol-Reactive Derivatives of the Solvatochromic 4- <i>N</i> , <i>N</i> -Dimethylamino-1,8-naphthalimide Fluorophore: A Highly Sensitive Toolset for the Detection of Biomolecular Interactions. Bioconjugate Chemistry, 2009, 20, 2133-2141.	3.6	53
79	Lanthanide-Binding Tags with Unnatural Amino Acids: Sensitizing Tb ³⁺ and Eu ³⁺ Luminescence at Longer Wavelengths. Bioconjugate Chemistry, 2008, 19, 588-591.	3.6	52
80	Semisynthesis of bipyridyl-alanine cytochrome c mutants: novel proteins with enhanced electron-transfer properties. Journal of the American Chemical Society, 1993, 115, 8455-8456.	13.7	51
81	(S)alphaAmino-(2,2'-bipyridine)-6-propanoic acid: a versatile amino acid for de novo metalloprotein design. Journal of the American Chemical Society, 1991, 113, 8527-8528.	13.7	50
82	Biochemical evidence for an alternate pathway in N-linked glycoprotein biosynthesis. Nature Chemical Biology, 2013, 9, 367-373.	8.0	50
83	Bacterial phosphoglycosyl transferases: initiators of glycan biosynthesis at the membrane interface. Glycobiology, 2017, 27, 820-833.	2.5	50
84	Coenzyme-Amino Acid Chimeras: New Residues for the Assembly of Functional Proteins. Journal of the American Chemical Society, 1994, 116, 12083-12084.	13.7	49
85	Study of the stability and unfolding mechanism of BBA1 by molecular dynamics simulations at different temperatures. Protein Science, 1999, 8, 1292-1304.	7.6	49
86	Substrate Specificity of the Glycosyl Donor for Oligosaccharyl Transferase. Journal of Organic Chemistry, 2001, 66, 6217-6228.	3.2	48
87	Rapid Combinatorial Screening of Peptide Libraries for the Selection of Lanthanide-Binding Tags (LBTs). QSAR and Combinatorial Science, 2005, 24, 1149-1157.	1.4	48
88	Asparagine surrogates for the assembly of N-linked glycopeptide mimetics by chemoselective ligation. Tetrahedron Letters, 2001, 42, 2085-2087.	1.4	47
89	Monitoring Protein Kinases in Cellular Media with Highly Selective Chimeric Reporters. Angewandte Chemie - International Edition, 2009, 48, 6828-6831.	13.8	47
90	Monotopic Membrane Proteins Join the Fold. Trends in Biochemical Sciences, 2019, 44, 7-20.	7.5	47

6

#	Article	IF	CITATIONS
91	Synthesis of Red-Shifted 8-Hydroxyquinoline Derivatives Using Click Chemistry and Their Incorporation into Phosphorylation Chemosensors. Journal of Organic Chemistry, 2009, 74, 7309-7314.	3.2	46
92	Analysis of the conserved glycosylation site in the nicotinic acetylcholine receptor: potential roles in complex assembly. Chemistry and Biology, 1995, 2, 751-759.	6.0	45
93	The engineering of membrane-permeable peptides. Analytical Biochemistry, 2005, 341, 290-298.	2.4	44
94	Polyisoprenol Specificity in the Campylobacter jejuni N-Linked Glycosylation Pathway. Biochemistry, 2007, 46, 14342-14348.	2.5	44
95	Encoded loop-lanthanide-binding tags for long-range distance measurements in proteins by NMR and EPR spectroscopy. Journal of Biomolecular NMR, 2015, 63, 275-282.	2.8	44
96	Genetic and molecular analyses reveal an evolutionary trajectory for glycan synthesis in a bacterial protein glycosylation system. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 9643-9648.	7.1	43
97	Bacterial carbohydrate diversity — a Brave New World. Current Opinion in Chemical Biology, 2019, 53, 1-8.	6.1	43
98	Caged Phospho-Amino Acid Building Blocks for Solid-Phase Peptide Synthesis. Journal of Organic Chemistry, 2003, 68, 6795-6798.	3.2	42
99	Synthesis of dolichols via asymmetric hydrogenation of plant polyprenols. Tetrahedron Letters, 1988, 29, 5343-5344.	1.4	41
100	Design of a discretely folded mini-protein motif with predominantly beta-structure. , 2001, 8, 535-539.		41
101	Biosynthesis of UDP-GlcNAc(3NAc)A by WbpB, WbpE, and WbpD: Enzymes in the Wbp Pathway Responsible for O-Antigen Assembly in <i>Pseudomonas aeruginosa</i> PAO1. Biochemistry, 2009, 48, 5446-5455.	2.5	41
102	General Method for the Synthesis of Caged Phosphopeptides:  Tools for the Exploration of Signal Transduction Pathways. Organic Letters, 2002, 4, 2865-2868.	4.6	40
103	Crystal Structure and Catalytic Mechanism of PgID from Campylobacter jejuni. Journal of Biological Chemistry, 2008, 283, 27937-27946.	3.4	40
104	Metal Ion Dependence of Oligosaccharyl Transferase: Implications for Catalysis. Biochemistry, 1995, 34, 9444-9450.	2.5	39
105	Membrane association of monotopic phosphoglycosyl transferase underpins function. Nature Chemical Biology, 2018, 14, 538-541.	8.0	39
106	Synthesis of dolichylpyrophosphate-linked oligosaccharides. Tetrahedron Letters, 1990, 31, 6485-6488.	1.4	38
107	Improving Glycopeptide Synthesis: A Convenient Protocol for the Preparation of β-Glycosylamines and the Synthesis of Glycopeptides. Journal of Organic Chemistry, 2005, 70, 3574-3578.	3.2	37
108	Solution Structure of Alg13: The Sugar Donor Subunit of a Yeast N-Acetylglucosamine Transferase. Structure, 2008, 16, 965-975.	3.3	37

#	Article	IF	CITATIONS
109	Stereoselective Synthesis and Peptide Incorporation of a Pyridoxal Coenzyme-Amino Acid Chimera. Journal of Organic Chemistry, 1995, 60, 1891-1894.	3.2	36
110	Interrogating Signaling Nodes Involved in Cellular Transformations Using Kinase Activity Probes. Chemistry and Biology, 2012, 19, 210-217.	6.0	35
111	Design of a Heterospecific, Tetrameric, 21-Residue Miniprotein with Mixed α/β Structure. Structure, 2005, 13, 225-234.	3.3	33
112	Bacterial N-Glycosylation Efficiency Is Dependent on the Structural Context of Target Sequons. Journal of Biological Chemistry, 2016, 291, 22001-22010.	3.4	33
113	A p38α-Selective Chemosensor for use in Unfractionated Cell Lysates. ACS Chemical Biology, 2011, 6, 101-105.	3.4	32
114	Conservation and Covariance in Small Bacterial Phosphoglycosyltransferases Identify the Functional Catalytic Core. Biochemistry, 2015, 54, 7326-7334.	2.5	30
115	Analysis of a dual domain phosphoglycosyl transferase reveals a ping-pong mechanism with a covalent enzyme intermediate. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 7019-7024.	7.1	30
116	In Situ Photoactivation of a Caged Phosphotyrosine Peptide Derived from Focal Adhesion Kinase Temporarily Halts Lamellar Extension of Single Migrating Tumor Cells. Journal of Biological Chemistry, 2005, 280, 22091-22101.	3.4	29
117	Exploiting Topological Constraints To Reveal Buried Sequence Motifs in the Membrane-Bound N-Linked Oligosaccharyl Transferases. Biochemistry, 2011, 50, 7557-7567.	2.5	29
118	Chemistry and biology of asparagine-linked glycosylation. Pure and Applied Chemistry, 1999, 71, 777-787.	1.9	27
119	Neoglycopeptides as Inhibitors of Oligosaccharyl Transferase. Chemistry and Biology, 2002, 9, 1323-1328.	6.0	27
120	Lanthanide-Binding Tags for 3D X-ray Imaging of Proteins in Cells at Nanoscale Resolution. Journal of the American Chemical Society, 2020, 142, 2145-2149.	13.7	27
121	Structural and Functional Characterization of a Constrained Asx-Turn Motif. Journal of the American Chemical Society, 1994, 116, 8424-8425.	13.7	26
122	A Modular Approach to Phosphoglycosyltransferase Inhibitors Inspired by Nucleoside Antibiotics. Chemistry - A European Journal, 2016, 22, 3856-3864.	3.3	26
123	Insights into the key determinants of membrane protein topology enable the identification of new monotopic folds. ELife, 2018, 7, .	6.0	26
124	Design and Evaluation of Potent Inhibitors of Asparagine-Linked Protein Glycosylation. Journal of the American Chemical Society, 1996, 118, 7636-7637.	13.7	25
125	The essential yeastNLT1gene encodes the 64 kDa glycoprotein subunit of the oligosaccharyl transferase. FEBS Letters, 1995, 362, 229-234.	2.8	24
126	Synthesis of the glucoallosamidin pseudo-disaccharide: Use of an efficient Hg(II) mediated cyclization. Tetrahedron Letters, 1996, 37, 599-602.	1.4	24

#	Article	IF	CITATIONS
127	A Dual Affinity Tag on the 64-kDa Nlt1p Subunit Allows the Rapid Characterization of Mutant Yeast Oligosaccharyl Transferase Complexes. Archives of Biochemistry and Biophysics, 1997, 338, 1-6.	3.0	24
128	A Potent Oligosaccharyl Transferase Inhibitor That Crosses the Intracellular Endoplasmic Reticulum Membraneâ€. Biochemistry, 1999, 38, 5430-5437.	2.5	24
129	Lightâ€Triggered Myosin Activation for Probing Dynamic Cellular Processes. Angewandte Chemie - International Edition, 2011, 50, 5667-5670.	13.8	24
130	Caged Mono- and Divalent Ligands for Light-Assisted Disruption of PDZ Domain-Mediated Interactions. Journal of the American Chemical Society, 2013, 135, 4580-4583.	13.7	24
131	A Rapid and Efficient Luminescence-based Method for Assaying Phosphoglycosyltransferase Enzymes. Scientific Reports, 2016, 6, 33412.	3.3	24
132	Peptidyl chemosensors incorporating a fret mechanism for detection of Ni(II). Bioorganic and Medicinal Chemistry Letters, 1998, 8, 1963-1968.	2.2	23
133	The Chemistry–Glycobiology Frontier. Journal of the American Chemical Society, 2012, 134, 17835-17839.	13.7	23
134	Lipid bilayer nanodisc platform for investigating polyprenol-dependent enzyme interactions and activities. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20863-20870.	7.1	23
135	Tailoring Chimeric Ligands for Studying and Biasing ErbB Receptor Family Interactions. Angewandte Chemie - International Edition, 2014, 53, 2662-2666.	13.8	23
136	Antibodies from multiple sclerosis patients preferentially recognize hyperglucosylated adhesin of non-typeable Haemophilus influenzae. Scientific Reports, 2016, 6, 39430.	3.3	23
137	Structural and mechanistic themes in glycoconjugate biosynthesis at membrane interfaces. Current Opinion in Structural Biology, 2019, 59, 81-90.	5.7	23
138	N-Linked Glycans Are Assembled on Highly Reduced Dolichol Phosphate Carriers in the Hyperthermophilic Archaea Pyrococcus furiosus. PLoS ONE, 2015, 10, e0130482.	2.5	23
139	Tailoring Encodable Lanthanideâ€Binding Tags as MRI Contrast Agents. ChemBioChem, 2012, 13, 2567-2574.	2.6	22
140	Biosynthesis of UDP-N,N′-diacetylbacillosamine in Acinetobacter baumannii: Biochemical characterization and correlation to existing pathways. Archives of Biochemistry and Biophysics, 2013, 536, 72-80.	3.0	22
141	Stereochemical Divergence of Polyprenol Phosphate Glycosyltransferases. Trends in Biochemical Sciences, 2018, 43, 10-17.	7.5	22
142	Semisynthesis of unnatural amino acid mutants of paxillin: Protein probes for cell migration studies. Protein Science, 2007, 16, 550-556.	7.6	21
143	Chemoenzymatic synthesis of polyprenyl phosphates. Bioorganic and Medicinal Chemistry, 2008, 16, 5149-5156.	3.0	21
144	Synthesis of anhydride precursors of the environment-sensitive fluorophores 4-DMAP and 6-DMN. Nature Protocols, 2007, 2, 3219-3225.	12.0	20

#	Article	IF	CITATIONS
145	Affinity-Capture Tandem Mass Spectrometric Characterization of Polyprenyl-Linked Oligosaccharides: Tool to Study Protein N-Glycosylation Pathways. Analytical Chemistry, 2008, 80, 5468-5475.	6.5	20
146	Structural Analysis of WbpE from <i>Pseudomonas aeruginosa</i> PAO1: A Nucleotide Sugar Aminotransferase Involved in O-Antigen Assembly,. Biochemistry, 2010, 49, 7227-7237.	2.5	20
147	Selective Mitogen Activated Protein Kinase Activity Sensors through the Application of Directionally Programmable D Domain Motifs. Biochemistry, 2014, 53, 5771-5778.	2.5	20
148	Tools for investigating peptide–protein interactions: peptide incorporation of environment-sensitive fluorophores via on-resin derivatization. Nature Protocols, 2007, 2, 3201-3209.	12.0	19
149	A rapid method for generation of selective Sox-based chemosensors of Ser/Thr kinases using combinatorial peptide libraries. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 1258-1260.	2.2	19
150	Strategies and Tactics for the Development of Selective Glycan-Binding Proteins. ACS Chemical Biology, 2021, 16, 1795-1813.	3.4	19
151	Stereoselective synthesis of β-linked TBDMS-protected chitobiose-asparagine: a versatile building block for amyloidogenic glycopeptides. Tetrahedron Letters, 2001, 42, 7207-7210.	1.4	18
152	X-ray structure analysis of a designed oligomeric miniprotein reveals a discrete quaternary architecture. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 12183-12188.	7.1	18
153	Development of a fluorogenic sensor for activated Cdc42. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 5058-5061.	2.2	18
154	Targeting Bacillosamine Biosynthesis in Bacterial Pathogens: Development of Inhibitors to a Bacterial Amino-Sugar Acetyltransferase from <i>Campylobacter jejuni</i> . Journal of Medicinal Chemistry, 2017, 60, 2099-2118.	6.4	17
155	Glycoconjugate pathway connections revealed by sequence similarity network analysis of the monotopic phosphoglycosyl transferases. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	17
156	Design strategies for the construction of independently folded polypeptide motifs. , 1998, 47, 23-29.		16
157	Modulating pyridoxamine-mediated transamination through a ββα motif peptide scaffold. Bioorganic and Medicinal Chemistry, 1999, 7, 1993-2002.	3.0	16
158	Discovery and Characterization of a Discretely Folded Homotrimeric ββα Peptide. Journal of the American Chemical Society, 2001, 123, 1002-1003.	13.7	16
159	Expression of N-terminal Cys-protein fragments using an intein refolding strategy. Bioorganic and Medicinal Chemistry, 2006, 14, 5043-5048.	3.0	16
160	Design and Construction of Novel Peptides and Proteins by Tailored Incorporation of Coenzyme Functionality. Topics in Current Chemistry, 1999, , 1-38.	4.0	16
161	Structural and Functional Analysis of Peptidyl Oligosaccharyl Transferase Inhibitorsâ€. Biochemistry, 1997, 36, 12554-12559.	2.5	15
162	FRET apture: A Sensitive Method for the Detection of Dynamic Protein Interactions. ChemBioChem, 2013, 14, 53-57.	2.6	15

#	Article	IF	CITATIONS
163	Optimized protocol for expression and purification of membrane-bound PglB, a bacterial oligosaccharyl transferase. Protein Expression and Purification, 2013, 89, 241-250.	1.3	15
164	Stereoselective synthesis of a pyridoxamine coenzyme-amino acid chimera: Assembly of a polypeptide incorporating the pyridoxamine moiety. Tetrahedron Letters, 1996, 37, 2129-2132.	1.4	14
165	Tools for investigating peptide–protein interactions: peptide incorporation of environment-sensitive fluorophores through SPPS-based 'building block' approach. Nature Protocols, 2007, 2, 3210-3218.	12.0	14
166	Quantification of Protein Kinase Enzymatic Activity in Unfractionated Cell Lysates Using CSoxâ€Based Sensors. Current Protocols in Chemical Biology, 2014, 6, 135-156.	1.7	14
167	Biochemical Analysis and Structure Determination of Bacterial Acetyltransferases Responsible for the Biosynthesis of UDP-N,N′-Diacetylbacillosamine. Journal of Biological Chemistry, 2013, 288, 32248-32260.	3.4	13
168	Two-Photon Fluorescence Spectroscopy and Imaging of 4-Dimethylaminonaphthalimide Peptide and Protein Conjugates. Journal of Physical Chemistry B, 2013, 117, 15935-15942.	2.6	13
169	A Strategic Approach for Fluorescence Imaging of Membrane Proteins in a Native-like Environment. Cell Chemical Biology, 2020, 27, 245-251.e3.	5.2	13
170	A reversible affinity tag for the purification of N-glycolyl capped peptides. Tetrahedron Letters, 1998, 39, 8241-8244.	1.4	12
171	Substrate specificity of N-acetylglucosaminyl(diphosphodolichol) N-acetylglucosaminyl transferase, a key enzyme in the dolichol pathway. Bioorganic and Medicinal Chemistry, 2001, 9, 1133-1140.	3.0	12
172	Chemoenzymatic Assembly of Bacterial Glycoconjugates for Site-Specific Orthogonal Labeling. Journal of the American Chemical Society, 2015, 137, 12446-12449.	13.7	12
173	Chemical Tools for Studying Directed Cell Migration. ACS Chemical Biology, 2011, 6, 1164-1174.	3.4	11
174	Selective biochemical labeling of Campylobacter jejuni cell-surface glycoconjugates. Glycobiology, 2015, 25, 756-766.	2.5	11
175	Design Principles for SuCESsFul Biosensors: Specific Fluorophore/Analyte Binding and Minimization of Fluorophore/Scaffold Interactions. Journal of Molecular Biology, 2016, 428, 4228-4241.	4.2	11
176	Investigation of the conserved reentrant membrane helix in the monotopic phosphoglycosyl transferase superfamily supports key molecular interactions with polyprenol phosphate substrates. Archives of Biochemistry and Biophysics, 2019, 675, 108111.	3.0	11
177	Uridine natural products: Challenging targets and inspiration for novel small molecule inhibitors. Bioorganic and Medicinal Chemistry, 2020, 28, 115661.	3.0	11
178	Application of a gut-immune co-culture system for the study of <i>N</i> -glycan-dependent host–pathogen interactions of <i>Campylobacter jejuni</i> . Glycobiology, 2020, 30, 374-381.	2.5	11
179	The surprising structural and mechanistic dichotomy of membrane-associated phosphoglycosyl transferases. Biochemical Society Transactions, 2021, 49, 1189-1203.	3.4	11
180	Model study for the incorporation of the (syn,anti)-2-amino-1,3-diol functionality in carbocycles. Tetrahedron Letters, 1998, 39, 7215-7218.	1.4	10

#	Article	IF	CITATIONS
181	Oligomeric ββα Miniprotein Motifs:  Pivotal Role of Single Hinge Residue in Determining the Oligomeric State. Journal of the American Chemical Society, 2002, 124, 428-433.	13.7	10
182	Peptides to peptidomimetics: towards the design and synthesis of bioavailable inhibitors of oligosaccharyl transferase. Organic and Biomolecular Chemistry, 2003, 1, 93-99.	2.8	10
183	Caged O-phosphorothioyl amino acids as building blocks for Fmoc-based solid phase peptide synthesis. Tetrahedron, 2007, 63, 6185-6190.	1.9	10
184	Probing the extended binding determinants of oligosaccharyl transferase with synthetic inhibitors of asparagine-linked glycosylation. Bioorganic and Medicinal Chemistry Letters, 2000, 10, 281-284.	2.2	9
185	Heterologous expression and biophysical characterization of soluble oligosaccharyl transferase subunits. Archives of Biochemistry and Biophysics, 2004, 431, 63-70.	3.0	9
186	Development of a multicomponent kinetic assay of the early enzymes in the Campylobacter jejuni N-linked glycosylation pathway. Bioorganic and Medicinal Chemistry, 2010, 18, 8167-8171.	3.0	9
187	Facile Solid-Phase Synthesis and Assessment of Nucleoside Analogs as Inhibitors of Bacterial UDP-Sugar Processing Enzymes. ACS Chemical Biology, 2018, 13, 2542-2550.	3.4	9
188	Modulation of Shank3 PDZ Domain Ligandâ€Binding Affinity by Dimerization. ChemBioChem, 2010, 11, 1979-1984.	2.6	8
189	The Best and the Brightest: Exploiting Tryptophan-Sensitized Tb3+ Luminescence to Engineer Lanthanide-Binding Tags. Methods in Molecular Biology, 2015, 1248, 201-220.	0.9	8
190	Probing Polytopic Membrane Protein–Substrate Interactions by Luminescence Resonance Energy Transfer. Journal of the American Chemical Society, 2016, 138, 3806-3812.	13.7	8
191	Conformational dynamics and alignment properties of loop lanthanide-binding-tags (LBTs) studied in interleukin-1β. Journal of Biomolecular NMR, 2017, 68, 187-194.	2.8	8
192	Biogenesis of Asparagine-Linked Glycoproteins Across Domains of Life—Similarities and Differences. ACS Chemical Biology, 2018, 13, 833-837.	3.4	8
193	The conformational basis of asparagine-linked glycosylation. Pure and Applied Chemistry, 1998, 70, 33-40.	1.9	7
194	α-Chloroacetyl capping of peptides: an N-terminal capping strategy suitable for Edman sequencing. Tetrahedron Letters, 2000, 41, 827-829.	1.4	7
195	Biopolymers Chemical and biological approaches for understanding form and function Editorial Overview. Current Opinion in Chemical Biology, 2000, 4, 599-601.	6.1	6
196	Chemoenzymatic Synthesis and Applications of Prokaryote-Specific UDP-Sugars. Methods in Enzymology, 2017, 597, 145-186.	1.0	6
197	Equilibrium and dynamic design principles for binding molecules engineered for reagentless biosensors. Analytical Biochemistry, 2014, 460, 9-15.	2.4	5
198	Design, solid-phase synthesis and evaluation of enterobactin analogs for iron delivery into the human pathogen Campylobacter jejuni. Bioorganic and Medicinal Chemistry, 2018, 26, 5314-5321.	3.0	5

#	Article	IF	CITATIONS
199	Deploying Fluorescent Nucleoside Analogues for Highâ€Throughput Inhibitor Screening. ChemBioChem, 2020, 21, 108-112.	2.6	4
200	Peptide platforms for metal ion sensing. , 1999, 3858, 135.		3
201	Interrogating biology with a chemical lexicon. Nature Chemistry, 2009, 1, 9-10.	13.6	3
202	Synthesis of Tylonolide, The Aglycone of Tylosin. Strategies and Tactics in Organic Synthesis, 1984, 1, 123-153.	0.1	2
203	Backbone-Anchoring, Solid-Phase Synthesis Strategy To Access a Library of Peptidouridine-Containing Small Molecules. Organic Letters, 2022, 24, 2170-2174.	4.6	2
204	Chemistry and Biochemistry of Asparagine-Linked Protein Glycosylation. , 2005, , 281-303.		1
205	Protein Oligomerization: How and Why. ChemInform, 2005, 36, no.	0.0	0
206	Preface. Methods in Enzymology, 2017, 597, xv-xix.	1.0	0
207	Preface. Methods in Enzymology, 2018, 598, xv-xix.	1.0	0
208	Design, Synthesis, and Characterization of Caged Compounds. Cold Spring Harbor Protocols, 2007, 2007, pdb.ip25-pdb.ip25.	0.3	0