
Antonio A Lozano-Pérez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5147811/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Effect of Sterilization on the Characteristics of Silk Fibroin Nanoparticles. Polymers, 2022, 14, 498.	4.5	6
2	Influence of addition of organic fillers on the properties of mechanically recycled PLA. Environmental Science and Pollution Research, 2021, 28, 24291-24304.	5.3	25
3	Effect of Yerba Mate and Silk Fibroin Nanoparticles on the Migration Properties in Ethanolic Food Simulants and Composting Disintegrability of Recycled PLA Nanocomposites. Polymers, 2021, 13, 1925.	4.5	7
4	Silk fibroin nanoparticles enhance quercetin immunomodulatory properties in DSS-induced mouse colitis. International Journal of Pharmaceutics, 2021, 606, 120935.	5.2	33
5	Extraction and Encapsulation of Phenolic Compounds of Tunisian Rosemary (Rosmarinus officinalis) Tj ETQq1 1 (0.784314	rgBT /Overloc
6	The silk of gorse spider mite Tetranychus lintearius represents a novel natural source of nanoparticles and biomaterials. Scientific Reports, 2020, 10, 18471.	3.3	7
7	Comparative Study of the Antioxidant and Anti-Inflammatory Effects of Leaf Extracts from Four Different Morus alba Genotypes in High Fat Diet-Induced Obesity in Mice. Antioxidants, 2020, 9, 733.	5.1	24
8	Chemoprevention of Experimental Periodontitis in Diabetic Rats with Silk Fibroin Nanoparticles Loaded with Resveratrol. Antioxidants, 2020, 9, 85.	5.1	12
9	Fluorescent DTPA-Silk Fibroin Nanoparticles Radiolabeled with ¹¹¹ In: A Dual Tool for Biodistribution and Stability Studies. ACS Biomaterials Science and Engineering, 2020, 6, 3299-3309.	5.2	9
10	scCO2-foamed silk fibroin aerogel/poly(Îμ-caprolactone) scaffolds containing dexamethasone for bone regeneration. Journal of CO2 Utilization, 2019, 31, 51-64.	6.8	49
11	Revealing the Influence of the Degumming Process in the Properties of Silk Fibroin Nanoparticles. Polymers, 2019, 11, 2045.	4.5	47
12	Extraction of organic compounds involved in the kinetic resolution of rac-2-pentanol from n-hexane by imidazolium-based ionic liquids: Liquid-liquid equilibrium. Journal of Molecular Liquids, 2018, 252, 445-453.	4.9	14
13	Biopolymeric Nanoparticle Synthesis in Ionic Liquids. , 2018, , .		8
14	CYTED Network to develop an immunogen compatible with integrated management strategies for tick control in cattle. Vaccine, 2018, 36, 6581-6586.	3.8	1
15	Density and refractive index data of binary and ternary mixtures of imidazolium-based ionic liquids, n-hexane and organic compounds involved in the kinetic resolution of rac-2-pentanol. Data in Brief, 2018, 19, 134-144.	1.0	4
16	Production of Curcumin-Loaded Silk Fibroin Nanoparticles for Cancer Therapy. Nanomaterials, 2018, 8, 126.	4.1	144
17	Silk fibroin nanoparticles as biocompatible nanocarriers of a novel light-responsive CO-prodrug. Dalton Transactions, 2018, 47, 10434-10438.	3.3	5
18	Silk fibroin nanoparticles: Efficient vehicles for the natural antioxidant quercetin. International Journal of Pharmaceutics, 2017, 518, 11-19.	5.2	77

ANTONIO A LOZANO-PéREZ

#	Article	IF	CITATIONS
19	Silkworm Gut Fiber of Bombyx mori as an Implantable and Biocompatible Light-Diffusing Fiber. International Journal of Molecular Sciences, 2016, 17, 1142.	4.1	9
20	Intestinal anti-inflammatory effects of RGD-functionalized silk fibroin nanoparticles in trinitrobenzenesulfonic acid-induced experimental colitis in rats. International Journal of Nanomedicine, 2016, Volume 11, 5945-5958.	6.7	40
21	Graphene adsorbed on silk-fibroin meshes: Biomimetic and reversible conformational movements driven by reactions. Electrochimica Acta, 2016, 209, 521-528.	5.2	16
22	Effect of aqueous and particulate silk fibroin in a rat model of experimental colitis. International Journal of Pharmaceutics, 2016, 511, 1-9.	5.2	26
23	Fabrication of electrospun silk fibroin scaffolds coated with graphene oxide and reduced graphene for applications in biomedicine. Bioelectrochemistry, 2016, 108, 36-45.	4.6	56
24	Production of silk fibroin nanoparticles using ionic liquids and highâ€power ultrasounds. Journal of Applied Polymer Science, 2015, 132, .	2.6	52
25	Importance of refrigeration time in the electrospinning of silk fibroin aqueous solutions. Journal of Materials Science, 2015, 50, 4879-4887.	3.7	18
26	Textile/Metal–Organicâ€Framework Composites as Selfâ€Detoxifying Filters for Chemicalâ€Warfare Agents. Angewandte Chemie - International Edition, 2015, 54, 6790-6794.	13.8	291
27	Antitumor properties of platinum(<scp>iv</scp>) prodrug-loaded silk fibroin nanoparticles. Dalton Transactions, 2015, 44, 13513-13521.	3.3	38
28	Mechanical behaviour and formation process of silkworm silk gut. Soft Matter, 2015, 11, 8981-8991.	2.7	14
29	Investigating the Dispersion Behavior in Solvents, Biocompatibility, and Use as Support for Highly Efficient Metal Catalysts of Exfoliated Graphitic Carbon Nitride. ACS Applied Materials & Interfaces, 2015, 7, 24032-24045.	8.0	57
30	Silk fibroin nanoparticles constitute a vector for controlled release of resveratrol in an experimental model of inflammatory bowel disease in rats. International Journal of Nanomedicine, 2014, 9, 4507.	6.7	62
31	Effects of composite films of silk fibroin and graphene oxide on the proliferation, cell viability and mesenchymal phenotype of periodontal ligament stem cells. Journal of Materials Science: Materials in Medicine, 2014, 25, 2731-2741.	3.6	75
32	Influence of the protocol used for fibroin extraction on the mechanical properties and fiber sizes of electrospun silk mats. Materials Science and Engineering C, 2013, 33, 1945-1950.	7.3	53
33	Preparation, crystal structures and NMR characterization of substituted-benzoate complexes Nickel(II)-N3-macrocycles. Polyhedron, 2007, 26, 1029-1036.	2.2	17
34	Structure and magnetic properties of carbonate-bridged five-coordinate nickel(ii) complexes controlled by solvent effect. Dalton Transactions, 2006, , 3906-3911.	3.3	38
35	Synthesis and Characterization of Heterotrinuclear Complexes of Nickel and Palladium with Pyridinecarboxylate as Bridging Ligands. European Journal of Inorganic Chemistry, 2005, 2005, 3049-3056.	2.0	13
36	Heteronuclear Nickel-Iron Complexes and the Crystal Structure of [Fe2(CO)6(μ3-S)2{Ni(dppe)}]. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2005, 631, 2062-2066.	1.2	10

#	Article	IF	CITATIONS
37	Five-coordinate nickel(ii) complexes with carboxylate anions and derivatives of 1,5,9-triazacyclododec-1-ene: structural and1H NMR spectroscopic studies. Dalton Transactions, 2005, , 104-109.	3.3	25
38	Pentacoordinate Nickel(II) Complexes Double Bridged by Phosphate Ester or Phosphinate Ligands: Spectroscopic, Structural, Kinetic, and Magnetic Studies. Chemistry - A European Journal, 2004, 10, 1738-1746.	3.3	38
39	Dithiophosphate and dithiophosphonate complexes of pentacoordinate nickel(II) containing the macrocycle 2,4,4-trimethyl-1,5,9-triazacyclododec-1-ene ([12]aneN3-mc1) or its 9-methyl derivative ([12]aneN3-mc2) Polyhedron, 2002, 21, 1935-1942.	2.2	25