
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5147683/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Crystal Structure of Hydroxyapatite Nanorods Synthesized by Sonochemical Homogeneous Precipitation. Crystal Growth and Design, 2008, 8, 2217-2222.	1.4	207
2	Synthesis and properties of hydroxyapatite/poly-?-lactide composite biomaterials. Biomaterials, 1999, 20, 809-816.	5.7	195
3	A study of HAp/PLLA composite as a substitute for bone powder, using FT-IR spectroscopy. Biomaterials, 2001, 22, 571-575.	5.7	130
4	Synthesis and application of hydroxyapatite/polylactide composite biomaterial. Applied Surface Science, 2004, 238, 314-319.	3.1	86
5	Nanoparticles of cobalt-substituted hydroxyapatite in regeneration of mandibular osteoporotic bones. Journal of Materials Science: Materials in Medicine, 2013, 24, 343-354.	1.7	83
6	Synthetical bone-like and biological hydroxyapatites: a comparative study of crystal structure and morphology. Biomedical Materials (Bristol), 2011, 6, 045005.	1.7	82
7	Crystal structure of cobalt-substituted calcium hydroxyapatite nanopowders prepared by hydrothermal processing. Journal of Applied Crystallography, 2010, 43, 320-327.	1.9	81
8	Chitosan-PLGA polymer blends as coatings for hydroxyapatite nanoparticles and their effect on antimicrobial properties, osteoconductivity and regeneration of osseous tissues. Materials Science and Engineering C, 2016, 60, 357-364.	3.8	76
9	Hydrothermal Synthesis of Nanosized Pure and Cobalt-Exchanged Hydroxyapatite. Materials and Manufacturing Processes, 2009, 24, 1096-1103.	2.7	74
10	Rare-earth (Gd3+,Yb3+/Tm3+, Eu3+) co-doped hydroxyapatite as magnetic, up-conversion and down-conversion materials for multimodal imaging. Scientific Reports, 2019, 9, 16305.	1.6	74
11	Evaluation of hot-pressed hydroxyapatite/poly-L-lactide composite biomaterial characteristics. Journal of Biomedical Materials Research Part B, 2004, 71B, 284-294.	3.0	69
12	Multifunctional hydroxyapatite and poly(d,l-lactide-co-glycolide) nanoparticles for the local delivery of cholecalciferol. Materials Science and Engineering C, 2013, 33, 943-950.	3.8	57
13	Instrumental methods and techniques for structural and physicochemical characterization of biomaterials and bone tissue: A review. Materials Science and Engineering C, 2017, 79, 930-949.	3.8	56
14	Micromechanical properties of a hydroxyapatite/poly-l-lactide biocomposite using nanoindentation and modulus mapping. Journal of the European Ceramic Society, 2007, 27, 1559-1564.	2.8	49
15	Micro- and nano-injectable composite biomaterials containing calcium phosphate coated with poly(dl-lactide-co-glycolide). Acta Biomaterialia, 2007, 3, 927-935.	4.1	47
16	Insights into the kinetics of thermally induced crystallization of amorphous calcium phosphate. Physical Chemistry Chemical Physics, 2018, 20, 29221-29235.	1.3	46
17	Gamma irradiation processing of hydroxyapatite/poly-L-lactide composite biomaterial. Radiation Physics and Chemistry, 2003, 67, 375-379.	1.4	44
18	Controlled assembly of poly(d,l-lactide-co-glycolide)/hydroxyapatite core–shell nanospheres under ultrasonic irradiation. Acta Biomaterialia, 2009, 5, 208-218.	4.1	44

#	Article	IF	CITATIONS
19	Investigating an organ-targeting platform based on hydroxyapatite nanoparticles using a novel in situ method of radioactive 1251odine labeling. Materials Science and Engineering C, 2014, 43, 439-446.	3.8	42
20	Microstructural characteristics of calcium hydroxyapatite/poly- l-lactide based composites. Journal of Microscopy, 1999, 196, 243-248.	0.8	40
21	A novel nano drug delivery system based on tigecycline-loaded calciumphosphate coated with poly-dl-lactide-co-glycolide. Journal of Materials Science: Materials in Medicine, 2010, 21, 231-239.	1.7	40
22	Improved percutaneous delivery of ketoprofen using combined application of nanocarriers and silicon microneedles. Journal of Pharmacy and Pharmacology, 2013, 65, 1451-1462.	1.2	39
23	Enhanced Osteogenesis of Nanosized Cobalt-substituted Hydroxyapatite. Journal of Bionic Engineering, 2015, 12, 604-612.	2.7	33
24	Chitosan oligosaccharide lactate coated hydroxyapatite nanoparticles as a vehicle for the delivery of steroid drugs and the targeting of breast cancer cells. Journal of Materials Chemistry B, 2018, 6, 6957-6968.	2.9	33
25	Cytotoxicity and fibroblast properties during in vitro test of biphasic calcium phosphate/poly-dl-lactide-co-glycolide biocomposites and different phosphate materials. Microscopy Research and Technique, 2006, 69, 976-982.	1.2	32
26	Biphasic calcium phosphate coated with poly-d,l-lactide-co-glycolide biomaterial as a bone substitute. Journal of the European Ceramic Society, 2007, 27, 1589-1594.	2.8	32
27	Poly(D,L-lactide-co-glycolide)/hydroxyapatite core–shell nanosphere. Part 2: Simultaneous release of a drug and a prodrug (clindamycin and clindamycin phosphate). Colloids and Surfaces B: Biointerfaces, 2011, 82, 414-421.	2.5	32
28	Radiation-induced degradation of hydroxyapatite/poly L-lactide composite biomaterial. Radiation Physics and Chemistry, 2007, 76, 722-728.	1.4	31
29	Hydrothermally processed 1D hydroxyapatite: Mechanism of formation and biocompatibility studies. Materials Science and Engineering C, 2016, 68, 746-757.	3.8	31
30	Substitution of Osteoporotic Alveolar Bone by Biphasic Calcium Phosphate/Poly-DL-lactide-co-glycolide Biomaterials. Journal of Biomaterials Applications, 2007, 21, 317-328.	1.2	30
31	Poly(d,l-lactide-co-glycolide)/hydroxyapatite core-shell nanospheres. Part 1: A multifunctional system for controlled drug delivery. Colloids and Surfaces B: Biointerfaces, 2011, 82, 404-413.	2.5	30
32	New biocomposite [biphasic calcium phosphate/ poly-DL-lactide-co-glycolide/biostimulative agent] filler for reconstruction of bone tissue changed by osteoporosis. Journal of Materials Science: Materials in Medicine, 2005, 16, 621-626.	1.7	29
33	Selective anticancer activity of hydroxyapatite/chitosan-poly(d,l)-lactide-co-glycolide particles loaded with an androstane-based cancer inhibitor. Colloids and Surfaces B: Biointerfaces, 2016, 148, 629-639.	2.5	25
34	Synthesis and Characterization of Hydroxyapatite-Collagen Biocomposite Materials. Materials Science Forum, 2003, 413, 269-0.	0.3	24
35	Influence of the Shape of Copper Powder Particles on the Crystal Structure and Some Decisive Characteristics of the Metal Powders. Metals, 2019, 9, 56.	1.0	24
36	Repair of Bone Tissue Affected by Osteoporosis with Hydroxyapatite-Poly-L-lactide (HAp-PLLA) With and Without Blood Plasma. Journal of Biomaterials Applications, 2005, 20, 179-190.	1.2	22

#	Article	IF	CITATIONS
37	Poly(d,l-lactide-co-glycolide)/hydroxyapatite core–shell nanospheres. Part 3: Properties of hydroxyapatite nano-rods and investigation of a distribution of the drug within the composite. Colloids and Surfaces B: Biointerfaces, 2011, 87, 226-235.	2.5	20
38	Size effect of calcium phosphate coated with polyâ€ <scp>DL</scp> â€lactide― <i>co</i> â€glycolide on healing processes in bone reconstruction. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2010, 94B, 108-117.	1.6	19
39	Biphasic Calcium Phosphate/Poly-(DL-Lactide-Co-Glycolide) Biocomposite as Filler and Blocks for Reparation of Bone Tissue. Materials Science Forum, 2005, 494, 519-524.	0.3	18
40	Thermal crystallization of amorphous calcium phosphate combined with citrate and fluoride doping: a novel route to produce hydroxyapatite bioceramics. Journal of Materials Chemistry B, 2021, 9, 4832-4845.	2.9	18
41	Comparative morphological and crystallographic analysis of copper powders obtained under different electrolysis conditions. Transactions of Nonferrous Metals Society of China, 2019, 29, 1275-1284.	1.7	16
42	Stereological analysis of the poly-(dl-lactide-co-glycolide) submicron sphere prepared by solvent/non-solvent chemical methods and centrifugal processing. Journal of Materials Science: Materials in Medicine, 2007, 18, 1339-1344.	1.7	15
43	The influence of gamma radiation on the molecular weight and glass transition of PLLA and HAp/PLLA nanocomposite. Nuclear Instruments & Methods in Physics Research B, 2010, 268, 2744-2749.	0.6	14
44	Anaphoretical/oxidative approach to the in-situ synthesis of adherent hydroxyapatite/titanium oxide composite coatings on titanium. Surface and Coatings Technology, 2019, 358, 688-694.	2.2	14
45	Anodizing/Anaphoretic Electrodeposition of Nano-Calcium Phosphate/Chitosan Lactate Multifunctional Coatings on Titanium with Advanced Corrosion Resistance, Bioactivity, and Antibacterial Properties. ACS Biomaterials Science and Engineering, 2021, 7, 3088-3102.	2.6	14
46	Molecular spectroscopy analysis of the substitution of bone tissue by HAp/PLLA composite biomaterial. Spectroscopy, 2004, 18, 553-565.	0.8	12
47	Synthesis and Characterization of Hydroxyapatite/Fullerenol Nanocomposites. Journal of Nanoscience and Nanotechnology, 2015, 15, 1538-1542.	0.9	12
48	Structure and characteristics of the hot pressed hydroxyapatite/poly-L-lactide composite. Science of Sintering, 2002, 34, 79-93.	0.5	12
49	Analysis of In Vivo Substitution of Bone Tissue by HAp/PLLA Composite Biomaterial with PLLA of Different Molecular Weights Using FTIR Spectroscopy. Materials Science Forum, 2000, 352, 143-150.	0.3	11
50	Stress analysis in hydroxyapatite/poly-l-lactide composite biomaterials. Computational Materials Science, 2001, 20, 275-283.	1.4	11
51	Poly(d,l-lactide-co-glycolide)/hydroxyapatite core–shell nanospheres. Part 4: A change of the surface properties during degradation process and the corresponding in vitro cellular response. Colloids and Surfaces B: Biointerfaces, 2012, 91, 144-153.	2.5	11
52	Spectrophotometric determination of phosphorus in coal and coal ash using bismuth-phosphomobybdate complex. Journal of the Serbian Chemical Society, 2003, 68, 65-73.	0.4	11
53	The Formation and Characterization of Nanocrystalline Phases by Mechanical Milling of Biphasic Calcium Phosphate/Poly-L-Lactide Biocomposite. Materials Transactions, 2006, 47, 2980-2986.	0.4	10
54	Biodegradable composites based on nanocrystalline calcium phosphate and bioresorbable polymers. Advances in Applied Ceramics, 2008, 107, 142-147.	0.6	10

#	Article	IF	CITATIONS
55	Nanotechnologies for early diagnosis, in situ disease monitoring, and prevention. , 2018, , 1-92.		10
56	Simultaneous anodization/anaphoretic electrodeposition synthesis of nano calcium phosphate/titanium oxide composite coatings assisted with chitosan oligosaccharide lactate. Materials Letters, 2020, 261, 127121.	1.3	10
57	Hydroxyapatite/poly-L-lactide (Collagen) Biocomposite with Poly-L-lactide of Different Molecular Weights. Advanced Engineering Materials, 2000, 2, 511-514.	1.6	9
58	Preparation of smallest microparticles of polyâ€< scp>D,Lâ€lactide by modified precipitation method: Influence of the process parameters. Microscopy Research and Technique, 2008, 71, 86-92.	1.2	9
59	Synthesis and Characterization of Biphasic Calcium Phosphate/ Poly-(DL-Lactide-Co-Glycolide) Biocomposite. Materials Science Forum, 2005, 494, 537-542.	0.3	8
60	Influence of ultrasonic processing on the macromolecular properties of poly (d,l-lactide-co-glycolide) alone and in its biocomposite with hydroxyapatite. Ultrasonics Sonochemistry, 2010, 17, 902-908.	3.8	8
61	<i>In Vitro</i> Evaluation of Nanoscale Hydroxyapatite-Based Bone Reconstructive Materials with Antimicrobial Properties. Journal of Nanoscience and Nanotechnology, 2016, 16, 1420-1428.	0.9	8
62	The effect of the androstane lung cancer inhibitor content on the cell-selective toxicity of hydroxyapatite-chitosan-PLGA nanocomposites. Materials Science and Engineering C, 2018, 89, 371-377.	3.8	8
63	Injectable polydimethylsiloxane-hydroxyapatite composite cement. Bio-Medical Materials and Engineering, 2003, 13, 401-10.	0.4	8
64	XRD Analysis of Calcium Phosphate and Biocomposite Calcium Phosphate/Bioresorbable Polymer. Materials Science Forum, 2006, 518, 507-512.	0.3	7
65	Spectroscopic characterization of bone tissue of experimental animals after glucocorticoid treatment and recovery period. Journal of Molecular Structure, 2014, 1074, 315-320.	1.8	6
66	Controllable Synthesis of Horseradish Peroxidase Loaded Poly(D,L-lactide) Nanospheres. Journal of Bionanoscience, 2009, 3, 22-32.	0.4	6
67	Nanomaterial N-CP/DLPLG as potent1onal tissue graft in osteoreparation in combination with bone marrow cells on subcutaneous implantation model. Hemijska Industrija, 2008, 62, 205-210.	0.3	6
68	Efficacy of nanocrystalline bone substitute biphasic calcium phosphate/poly-DL-lactide-co-glycolide for periodontal intrabony defects filling. Vojnosanitetski Pregled, 2015, 72, 689-695.	0.1	6
69	Germanium-doped hydroxyapatite: Synthesis and characterization of a new substituted apatite. Ceramics International, 2022, 48, 27693-27702.	2.3	6
70	Hormone receptor binding, selectivity and cytotoxicity of steroid D-homo lactone loaded chitosan nanoparticles for the treatment of breast and prostate cancer cells. Colloids and Surfaces B: Biointerfaces, 2022, 216, 112597.	2.5	5
71	Apatite Formation on Nanomaterial Calcium Phosphate/poly-DL-lactide-co-glycolide in Simulated Body Fluid. Journal of Applied Biomaterials and Functional Materials, 2012, 10, 43-48.	0.7	4
72	In vitro evaluation of a multifunctional nano drug delivery system based on tigecycline-loaded calcium-phosphate/ poly-DL-lactide-co-glycolide. Bio-Medical Materials and Engineering, 2014, 24, 1647-1658.	0.4	4

#	Article	IF	CITATIONS
73	Determination of thermodynamic interactions of poly(l-lactide) and biphasic calcium phosphate/poly(l-lactide) composite by inverse gas chromatography at infinite dilution. Journal of Materials Science, 2014, 49, 5076-5086.	1.7	4
74	Effects of hydroxyapatite@poly-lactide-co-glycolide nanoparticles combined with Pb and Cd on liver and kidney parenchyma after the reconstruction of mandibular bone defects. Toxicology Research, 2019, 8, 287-296.	0.9	4
75	Ectopic osteogenesis and hematopoiesis after implantantion of bone marrow cells seeded on HAP/PLLA scaffold. Hemijska Industrija, 2009, 63, 301-307.	0.3	4
76	Preparation of TiO ₂ and ZnO Thin Films by Dip-Coating Method. Materials Science Forum, 1998, 282-283, 147-152.	0.3	3
77	In Vitro and In Vivo Investigation of Collagen - C ₆₀ (OH) ₂₄ Interaction. Materials Science Forum, 2004, 453-454, 561-566.	0.3	3
78	Preparation and Properties of Polymeric and Composite Bioresorbable Barrier Membranes. Materials Science Forum, 2004, 453-454, 537-542.	0.3	3
79	Nanoindentation of In Situ Polymers in Hydroxyapatite/Poly-L-Lactide Biocomposites. Materials Science Forum, 2006, 518, 501-506.	0.3	3
80	INTERACTION OF BIOMATERIALS CONTAINING CALCIUM HYDROXYAPATITE/POLY-L-LACTIDE WITH THE SIMULATED BODY FLUID. Acta Medica Medianae, 2011, , 35-39.	0.0	3
81	Chitosan nanobeads loaded with Biginelli hybrids as cell-selective toxicity systems with a homogeneous distribution of the cell cycle in cancer treatment. RSC Advances, 2020, 10, 41542-41550.	1.7	3
82	Cytotoxicity of amorphous calcium phosphate multifunctional composite coatings on titanium obtained by in situ anodization/anaphoretic deposition. Journal of the Serbian Chemical Society, 2021, 86, 555-559.	0.4	3
83	Interdisciplinary crossover for rapid advancements - collaboration between medical and engineering scientists with the focus on Serbia. Srpski Arhiv Za Celokupno Lekarstvo, 2021, 149, 229-235.	0.1	3
84	Relationship between the properties of an interlayer formed by in situ Ti anodization and anaphoretically deposited hydroxyapatite. Journal of the Serbian Chemical Society, 2019, 84, 1305-1318.	0.4	3
85	The Effect of Processing Parameters on Characteristics of Poly-L-Lactide Microspheres. Materials Science Forum, 2007, 555, 453-458.	0.3	2
86	The role of synthetic biomaterials in resorptive alveolar bone regeneration. Hemijska Industrija, 2007, 61, 96-100.	0.3	2
87	From molecules to nanoparticles to functional materials. Journal of the Serbian Chemical Society, 2020, 85, 1383-1403.	0.4	2
88	The Influence of Nanomaterial Calcium Phosphate/poly-(dl-lactide-co-glycolide) on Proliferation and Adherence of HeLa Cells. , 2017, , 387-400.		1
89	Pathway to tailor the phase composition, microstructure and mechanical properties of pulsed laser deposited cobalt-substituted calcium phosphate coatings on titanium. Surface and Coatings Technology, 2022, 437, 128275.	2.2	1
90	Processing and Mechanical Properties of Biphasic Calcium-Phosphate/Poly-L-Lactide Composite Biomaterials. Materials Science Forum, 2004, 471-472, 273-277.	0.3	0

#	Article	IF	CITATIONS
91	The Influence of Gamma Radiation on the Glass Transition of Hydroxyapatite/Poly L-Lactide Composite. Materials Science Forum, 2007, 555, 497-502.	0.3	Ο
92	Scanning Electron Microscopy Analysis of Changes of Hydroxiapatite/Poly-L-Lactide with Different Molecular Weight of PLLAaAfter Intraperitoneal Implantation. Acta Veterinaria, 2016, 66, 234-244.	0.2	0
93	The structure and glass transition behavior of PLLA under the influence of gamma radiation. Hemijska Industrija, 2010, 64, 275-281.	0.3	0
94	Multifunctional and hybrid systems based on calcium-phosphate and hydroxyapatite for preventive and regenerative medicine. Tehnika, 2017, 72, 11-24.	0.0	0
95	Molecular designing of nanoparticles and functional materials. Journal of the Serbian Chemical Society, 2017, 82, 607-625.	0.4	0