
Christiane Volbracht

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5147636/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Highly Specific and Sensitive Target Binding by the Humanized pS396-Tau Antibody hC10.2 Across a Wide Spectrum of Alzheimer's Disease and Primary Tauopathy Postmortem Brains. Journal of Alzheimer's Disease, 2022, 88, 207-228.	1.2	5
2	PKR kinase directly regulates tau expression and Alzheimer's diseaseâ€related tau phosphorylation. Brain Pathology, 2021, 31, 103-119.	2.1	17
3	Anti-Aβ Antibody Aducanumab Regulates the Proteome of Senile Plaques and Closely Surrounding Tissue in a Transgenic Mouse Model of Alzheimer's Disease. Journal of Alzheimer's Disease, 2021, 79, 249-265.	1.2	27
4	Proteomic and Unbiased Post-Translational Modification Profiling of Amyloid Plaques and Surrounding Tissue in a Transgenic Mouse Model of Alzheimer's Disease. Journal of Alzheimer's Disease, 2020, 73, 393-411.	1.2	9
5	Dual strategy for reduced signalâ€suppression effects in matrixâ€assisted laser desorption/ionization mass spectrometry imaging. Rapid Communications in Mass Spectrometry, 2019, 33, 1711-1721.	0.7	5
6	Tau Antibody Structure Reveals a Molecular Switch Defining a Pathological Conformation of the Tau Protein. Scientific Reports, 2018, 8, 6209.	1.6	20
7	Highly specific and selective antiâ€pS396â€ŧau antibody C10.2 targets seedingâ€competent tau. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2018, 4, 521-534.	1.8	33
8	Early depletion of CA1 neurons and late neurodegeneration in a mouse tauopathy model. Brain Research, 2017, 1665, 22-35.	1.1	43
9	Hyperactivity with Agitative-Like Behavior in a Mouse Tauopathy Model. Journal of Alzheimer's Disease, 2015, 49, 783-795.	1.2	44
10	Pharmacological Inhibition of BACE1 Impairs Synaptic Plasticity and Cognitive Functions. Biological Psychiatry, 2015, 77, 729-739.	0.7	109
11	The identification of GPR3 inverse agonist AF64394; The first small molecule inhibitor of GPR3 receptor function. Bioorganic and Medicinal Chemistry Letters, 2014, 24, 5195-5198.	1.0	20
12	Altered Function of Hippocampal CA1 Pyramidal Neurons in the rTg4510 Mouse Model of Tauopathy. Journal of Alzheimer's Disease, 2014, 40, 429-442.	1.2	22
13	Memantine potentiates hippocampal theta oscillations at a therapeutic dose in anesthetized mice: A mechanistic link to its cognitive-enhancing properties. Neuropharmacology, 2012, 62, 2208-2218.	2.0	24
14	Characteristics of TBS-Extractable Hyperphosphorylated Tau Species: Aggregation Intermediates in rTg4510 Mouse Brain. Journal of Alzheimer's Disease, 2012, 33, 249-263.	1.2	81
15	Secretome protein enrichment identifies physiological BACE1 protease substrates in neurons. EMBO Journal, 2012, 31, 3157-3168.	3.5	279
16	γ-Secretase Inhibition Reduces Spine Density <i>In Vivo</i> via an Amyloid Precursor Protein-Dependent Pathway. Journal of Neuroscience, 2009, 29, 10405-10409.	1.7	111
17	Differential effects of γâ€secretase and BACE1 inhibition on brain Aβ levels <i>in vitro</i> and <i>in vivo</i> . Journal of Neurochemistry, 2009, 110, 1377-1387.	2.1	24
18	Measurement of cellular Î ² -site of APP cleaving enzyme 1 activity and its modulation in neuronal assay systems. Analytical Biochemistry, 2009, 387, 208-220.	1.1	7

CHRISTIANE VOLBRACHT

#	Article	IF	CITATIONS
19	Wide spectrum modulation by KP-544 in models relevant for neuronal survival. NeuroReport, 2007, 18, 571-575.	0.6	3
20	Attenuated amyloid-β aggregation and neurotoxicity owing to methionine oxidation. NeuroReport, 2007, 18, 559-563.	0.6	50
21	Neuroprotective properties of memantine in differentin vitroandin vivomodels of excitotoxicity. European Journal of Neuroscience, 2006, 23, 2611-2622.	1.2	154
22	The critical role of calpain versus caspase activation in excitotoxic injury induced by nitric oxide. Journal of Neurochemistry, 2005, 93, 1280-1292.	2.1	51
23	The critical role of calpain vs. caspase activation in excitotoxic injury induced by nitric oxide. Journal of Neurochemistry, 2005, 94, 1471-1471.	2.1	0
24	Mitochondrial translocation of cofilin is an early step in apoptosis induction. Nature Cell Biology, 2003, 5, 1083-1089.	4.6	290
25	Cascade of Caspase Activation in Potassium-Deprived Cerebellar Granule Neurons: Targets for Treatment with Peptide and Protein Inhibitors of Apoptosis. Molecular and Cellular Neurosciences, 2001, 17, 717-731.	1.0	77
26	Apoptosis in Caspase-inhibited Neurons. Molecular Medicine, 2001, 7, 36-48.	1.9	101
27	Calpain inhibitors prevent nitric oxide-triggered excitotoxic apoptosis. NeuroReport, 2001, 12, 3645-3648.	0.6	41
28	Energy Requirement for Caspase Activation and Neuronal Cell Death. Brain Pathology, 2000, 10, 276-282.	2.1	112
29	ATP Controls Neuronal Apoptosis Triggered by Microtubule Breakdown or Potassium Deprivation. Molecular Medicine, 1999, 5, 477-489.	1.9	88
30	Execution of Apoptosis: Converging or Diverging Pathways?. Biological Chemistry, 1999, 380, 1035-40.	1.2	33
31	The Expression of Plasma Membrane Ca2+ Pump Isoforms in Cerebellar Granule Neurons Is Modulated by Ca2+. Journal of Biological Chemistry, 1999, 274, 1667-1676.	1.6	100
32	CD95-mediated murine hepatic apoptosis requires an intact glutathione status. Hepatology, 1999, 30, 177-185.	3.6	62
33	1-Methyl-4-Phenylpyridinium Induces Autocrine Excitotoxicity, Protease Activation, and Neuronal Apoptosis. Molecular Pharmacology, 1998, 54, 789-801.	1.0	144
34	Apoptosis in the Absence of Poly- (ADP-ribose) Polymerase. Biochemical and Biophysical Research Communications, 1997, 233, 518-522.	1.0	138
35	Caspase-Mediated Apoptosis in Neuronal Excitotoxicity Triggered by Nitric Oxide. Molecular Medicine, 1997, 3, 750-764.	1.9	174