Qiang Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5147364/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Achievement of a table-like magnetocaloric effect in the dual-phase ErZn ₂ /ErZn composite. Materials Research Letters, 2018, 6, 67-71.	4.1	132
2	Recent progress on transition metal oxides as advanced materials for energy conversion and storage. Energy Storage Materials, 2021, 42, 317-369.	9.5	113
3	Relationship of microstructure, mechanical properties and titanium cutting performance of TiAlN/TiAlSiN composite coated tool. Ceramics International, 2016, 42, 7524-7532.	2.3	74
4	A novel method for in situ formation of bulk layered composites with compositional gradients by magnetic field gradient. Scripta Materialia, 2007, 56, 1087-1090.	2.6	65
5	Fabrication of functionally graded materials by a semi-solid forming process under magnetic field gradients. Scripta Materialia, 2007, 57, 992-995.	2.6	63
6	First-principles study of electronic, optical and thermal transport properties of group III–VI monolayer MX (M = Ga, In; X = S, Se). Journal of Applied Physics, 2019, 125, .	1.1	61
7	Self-Assembled 3D Hierarchical Porous Bi ₂ MoO ₆ Microspheres toward High Capacity and Ultra-Long-Life Anode Material for Li-Ion Batteries. ACS Applied Materials & Interfaces, 2017, 9, 21781-21790.	4.0	57
8	Phase alignment and crystal orientation of Al3Ni in Al–Ni alloy by imposition of a uniform high magnetic field. Journal of Crystal Growth, 2008, 310, 1256-1263.	0.7	56
9	Structure and properties of Co-doped ZnO films prepared by thermal oxidization under a high magnetic field. Nanoscale Research Letters, 2015, 10, 112.	3.1	44
10	Nitrogenâ€Doped Grapheneâ€Buffered Mn ₂ O ₃ Nanocomposite Anodes for Fast Charging and High Discharge Capacity Lithiumâ€Ion Batteries. Small, 2019, 15, e1903311.	5.2	44
11	Lone-Pair Electrons Do Not Necessarily Lead to Low Lattice Thermal Conductivity: An Exception of Two-Dimensional Penta-CN ₂ . Journal of Physical Chemistry Letters, 2018, 9, 2474-2483.	2.1	38
12	Effects of high uniform magnetic fields on diffusion behavior at the Cu/Al solid/liquid interface. Scripta Materialia, 2007, 56, 485-488.	2.6	37
13	Effect of high hardness and adhesion of gradient TiAlSiN coating on cutting performance of titanium alloy. Journal of Alloys and Compounds, 2020, 820, 153137.	2.8	37
14	Evolution of morphology in electrodeposited nanocrystalline Co–Ni films by in-situ high magnetic field application. Talanta, 2013, 110, 66-70.	2.9	36
15	Growth of diffusion layers at liquid Al–solid Cu interface under uniform and gradient high magnetic field conditions. Materials Chemistry and Physics, 2009, 117, 504-510.	2.0	35
16	Fabrication of MnBi/Bi composite using dilute master alloy solidification under high magnetic field gradients. Journal Physics D: Applied Physics, 2009, 42, 025001.	1.3	35
17	Formation of chainlike structures in an Mn-89.7 wt%Sb alloy during isothermal annealing process in the semisolid state in a high magnetic field. Journal of Materials Research, 2009, 24, 2321-2330.	1.2	33
18	Structural, morphological and transport properties of Ni doped ZnO thin films deposited by thermal co-evaporation method. Materials Science in Semiconductor Processing, 2021, 123, 105530.	1.9	29

#	Article	IF	CITATIONS
19	Magnetostriction of TbFe2-based alloy treated in a semi-solid state with a high magnetic field. Applied Physics Letters, 2012, 101, .	1.5	28
20	Effects of Electromagnetic Swirling Flow in Submerged Entry Nozzle on Square Billet Continuous Casting of Steel Process. ISIJ International, 2013, 53, 1187-1194.	0.6	28
21	Crystal orientation and grain alignment in a hypoeutectic Mn–Sb alloy under high magnetic field conditions. Journal of Alloys and Compounds, 2009, 481, 755-760.	2.8	27
22	Multilayer-growth of TiAlN/WS self-lubricating composite coatings with high adhesion and their cutting performance on titanium alloy. Composites Part B: Engineering, 2021, 211, 108620.	5.9	27
23	Distribution of alloying elements and the corresponding structural evolution of Mn–Sb alloys in high magnetic field gradients. Journal of Materials Research, 2010, 25, 1718-1727.	1.2	26
24	Enhancement of the Kirkendall effect in Cu–Ni diffusion couples induced by high magnetic fields. Journal of Applied Physics, 2010, 107, .	1.1	26
25	Surface O2- regulation on POM electrocatalyst to achieve accurate 2e/4e-ORR control for H2O2 production and Zn-air battery assemble. Applied Catalysis B: Environmental, 2021, 285, 119788.	10.8	26
26	Improving the Magnetic Properties of Molecular-Beam-Vapor-Deposited Ni ₄₅ Fe ₅₅ Nanocrystalline Films by <i>In-Situ</i> High Magnetic Field Application. Science of Advanced Materials, 2013, 5, 447-452.	0.1	26
27	Theoretical insight into magnetic and thermoelectric properties of Au doped ZnO compounds using density functional theory. Physica B: Condensed Matter, 2019, 562, 67-74.	1.3	25
28	Hybrid Zn Battery with Coordination-Polymer-Derived, Oxygen-Vacancy-Rich Co ₃ O ₄ as a Cathode Material. ACS Sustainable Chemistry and Engineering, 2020, 8, 4384-4391.	3.2	25
29	Effects of a high magnetic field on the coarsening of MnBi grains solidified from isothermal annealed semi-solid melt. Journal of Alloys and Compounds, 2010, 505, 96-100.	2.8	24
30	High magnetic field induced pillar growth and subsequent magnetic properties of the thermal evaporated Co thin films. Materials Letters, 2014, 133, 53-56.	1.3	24
31	Hybrid battery integrated by Zn-air and Zn-Co3O4 batteries at cell level. Journal of Energy Chemistry, 2020, 49, 375-383.	7.1	24
32	Nucleation behavior of bulk Ni–Cu alloy and pure Sb in High magnetic fields. Journal of Crystal Growth, 2011, 321, 167-170.	0.7	23
33	Joint improvement of conductivity and Seebeck coefficient in the ZnO:Al thermoelectric films by tuning the diffusion of Au layer. Materials and Design, 2018, 154, 41-50.	3.3	23
34	Control of solidified structures in aluminum–silicon alloys by high magnetic fields. Journal of Materials Science, 2007, 42, 10000-10006.	1.7	22
35	Layered Na2V6O16 nanobelts as promising cathode and symmetric electrode for Na-ion batteries with high capacity. Journal of Alloys and Compounds, 2016, 688, 55-60.	2.8	22
36	Effect of ultrafine gradient cemented carbides substrate on the performance of coating tools for titanium alloy high speed cutting. International Journal of Refractory Metals and Hard Materials, 2019, 84, 105024.	1.7	21

#	Article	IF	CITATIONS
37	Migration and rotation of TiAl3 particles in an Al-melt solidified under high magnetic field conditions. Journal of Alloys and Compounds, 2009, 472, 225-229.	2.8	20
38	Microstructural, magnetic and magnetostrictive properties of Tb0.3Dy0.7Fe1.95prepared by solidification in a high magnetic field. Journal Physics D: Applied Physics, 2013, 46, 125005.	1.3	20
39	Effect of Ta content on microstructure, hardness and oxidation resistance of TiAlTaN coatings. International Journal of Refractory Metals and Hard Materials, 2016, 58, 152-156.	1.7	20
40	High magnetic field-induced synthesis of one-dimensional FePt nanomaterials. RSC Advances, 2016, 6, 84684-84688.	1.7	20
41	Effects of high magnetic field on the structure evolution, magnetic and electrical properties of the molecular beam vapor deposited FexNi1â^'x (0.3≤<0.8) thin films. Journal of Magnetism and Magnetic Materials, 2013, 332, 38-43.	1.0	19
42	Structure and thermoelectric properties of Al-doped ZnO films prepared by thermal oxidization under high magnetic field. Superlattices and Microstructures, 2017, 104, 282-290.	1.4	19
43	Tailoring the shape and size of wet-chemical synthesized FePt nanoparticles by controlling nucleation and growth with a high magnetic field. Nanoscale, 2019, 11, 15023-15028.	2.8	19
44	Effects of high magnetic fields on the microstructures and grain boundaries in binary Al–Li alloy. Journal of Alloys and Compounds, 2009, 469, 258-263.	2.8	18
45	Effects of high magnetic fields on solidification microstructure of Al–Si alloys. Journal of Materials Science, 2011, 46, 1628-1634.	1.7	18
46	Magnetic domain structure, crystal orientation, and magnetostriction of Tb 0.27 Dy 0.73 Fe 1.95 solidified in various high magnetic fields. Journal of Magnetism and Magnetic Materials, 2016, 401, 755-759.	1.0	18
47	Directional solidification of Al–8 wt. %Fe alloy under high magnetic field gradient. Journal of Applied Physics, 2017, 121, .	1.1	18
48	Synthesis of super-fine L10-FePt nanoparticles with high ordering degree by two-step sintering under high magnetic field. Journal of Materials Science and Technology, 2021, 73, 178-185.	5.6	17
49	Solidified Structure Control of Metallic Materials by Static High Magnetic Fields. ISIJ International, 2010, 50, 1941-1946.	0.6	16
50	Effects of high magnetic fields on the crystal orientation and magnetostriction of a TbFe2 based alloy during treatment in the semi-solid state. Journal of Alloys and Compounds, 2014, 590, 110-115.	2.8	16
51	Tuning microstructure and magnetic properties of electrodeposited CoNiP films by high magnetic field annealing. Journal of Magnetism and Magnetic Materials, 2016, 416, 61-65.	1.0	16
52	Polyoxometalate on rice paper derived 3D mesoporous carbon paper: An electrocatalyst as cathode for asymmetric Zn-air battery. Journal of Power Sources, 2019, 430, 201-209.	4.0	16
53	Direct Synthesis of <i>L</i> 1 ₀ -FePt Nanoparticles with High Coercivity via Pb Addition for Applications in Permanent Magnets and Catalysts. ACS Applied Nano Materials, 2020, 3, 1098-1103.	2.4	16
54	Formation of aligned two-phase microstructure in Fe-0.25Âmass%C alloy under gradient high magnetic fields. Materials Letters, 2008, 62, 1466-1468.	1.3	15

#	Article	IF	CITATIONS
55	Effects of high magnetic fields on solidified structures of Mn-90.4 wt% Sb hypoeutectic alloy. Science and Technology of Advanced Materials, 2009, 10, 014606.	2.8	15
56	Composition, concentration and configuration dependence of the icosahedral transformations in Cu-based bimetallic clusters. Modelling and Simulation in Materials Science and Engineering, 2009, 17, 055005.	0.8	15
57	One-step Sinter-HIP method for preparation of functionally graded cemented carbide with ultrafine grains. Ceramics International, 2016, 42, 5362-5367.	2.3	15
58	Utilization of electroless plating to prepare Cu-coated cotton cloth electrode for flexible Li-ion batteries. Rare Metals, 2021, 40, 400-408.	3.6	15
59	Breaking the tradeoff among thermoelectric parameters by multi composite of porosity and CNT in AZO films. Energy, 2021, 225, 120320.	4.5	15
60	Enhancement of mechanical properties of Tb0.27Dy0.73Fe1.95 alloy by directional solidification in high magnetic field. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 785, 139377.	2.6	14
61	Enhanced magnetostriction of Tb–Dy–Fe via simultaneous ⟔111⟩-crystallographic orientation and -morphological alignment induced by directional solidification in high magnetic fields. Applied Physics Letters, 2020, 116, .	1.5	14
62	Synthesis of hyperbranched Co-Ni-P nanocrystals and their splitting degree dependent HER performances. Electrochimica Acta, 2021, 381, 138286.	2.6	14
63	Effects of thickness and high magnetic field on the microstructure and magnetic properties of FeNi-SiO2 nanoparticle composite films. Materials and Design, 2016, 111, 17-24.	3.3	13
64	Structural transformation between bcc and fcc in Fe–Ni nanoparticle during heating process. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 3500-3504.	0.9	13
65	In situ preparation of symmetrically graded microstructures by solidification in high-gradient magnetic field after melt and partial-melt processes. Journal of Alloys and Compounds, 2016, 689, 1020-1027.	2.8	13
66	Enhancement of electric and magnetic properties by tuning Co cluster in ZnO films via high magnetic field. Applied Surface Science, 2017, 416, 521-526.	3.1	13
67	Wetting behaviors of molten melt drops on polycrystalline Al2O3 substrates in high magnetic fields. Journal of Materials Science and Technology, 2020, 41, 187-190.	5.6	13
68	Macrosegregation under new flow pattern and temperature distribution induced by electromagnetic swirling flow in nozzle during continuous casting of square billet. Journal of Materials Research and Technology, 2020, 9, 5630-5639.	2.6	13
69	Effects of a high magnetic field on the phase equilibria of Mn–Sb system during solidification process. Journal of Alloys and Compounds, 2011, 509, 5822-5824.	2.8	12
70	The accelerating effect of high magnetic field annealing on the interdiffusion behavior of Co/Ni films. Materials Letters, 2013, 106, 190-192.	1.3	12
71	Unconventional thermal transport enhancement with large atom mass: a comparative study of 2D transition dichalcogenides. 2D Materials, 2018, 5, 015022.	2.0	12
72	High-gradient magnetic field-controlled migration of solutes and particles and their effects on solidification microstructure: A review. Chinese Physics B, 2018, 27, 118103.	0.7	12

#	Article	IF	CITATIONS
73	Investigation of the crystal structure, magnetic phase transition and magnetocaloric effect in RE5Ni2In4 (RE = Dy, Ho and Er) compounds. Intermetallics, 2018, 100, 136-141.	1.8	12
74	Evolutions of microstructure and magnetic property of wet-chemical synthesized FePt nanoparticles assisted by high magnetic field. Journal of Alloys and Compounds, 2019, 797, 1372-1377.	2.8	12
75	Effect of highâ€energy ball milling on the microstructure and properties of ultrafine gradient cemented carbides. International Journal of Applied Ceramic Technology, 2020, 17, 2298-2306.	1.1	12
76	In situ control of the distributions of alloying elements in alloys in liquid state using high magnetic field gradients. Journal of Crystal Growth, 2011, 335, 121-126.	0.7	11
77	Magnetic-field-dependent microstructure evolution and magnetic properties of Tb0.27Dy0.73Fe1.95 alloy during solidification. Journal of Magnetism and Magnetic Materials, 2014, 357, 18-23.	1.0	11
78	Effect of powder particle size on gradient formation and grain growth in ultrafine crystalline gradient cemented carbide. International Journal of Refractory Metals and Hard Materials, 2016, 56, 63-68.	1.7	11
79	Microstructure evolution of peritectic Al–18 at.% Ni alloy directionally solidified in high magnetic fields. Journal of Materials Science and Technology, 2021, 76, 51-59.	5.6	11
80	Analysis of an Automatic Steel-teeming Method Using Electromagnetic Induction Heating in Slide Gate System. ISIJ International, 2010, 50, 1770-1776.	0.6	10
81	Diffusion interaction between Al and Mg controlled by a high magnetic field. Applied Physics A: Materials Science and Processing, 2011, 105, 969-974.	1.1	10
82	Evolution behavior of oxide scales of TiAlCrN coatings at high temperature. Surface and Coatings Technology, 2019, 360, 133-139.	2.2	10
83	Ab-initio, Monte Carlo and experimental investigation on structural, electronic and magnetic properties of Zn1-Ni O nanoparticles prepared via sol-gel method. Journal of Alloys and Compounds, 2021, 854, 157142.	2.8	10
84	Effects of high magnetic field on the growth and magnetic property of L10-FePtCu nanoparticles. Journal of Magnetism and Magnetic Materials, 2021, 526, 167731.	1.0	10
85	Preparation of nanocrystalline gradient cemented carbide by adding gradient former of V(C, N). International Journal of Refractory Metals and Hard Materials, 2021, 100, 105630.	1.7	10
86	Copper Distribution in Fe–Cu and Fe–C–Cu Alloys under Imposition of an Intense Magnetic Field. ISIJ International, 2008, 48, 901-905.	0.6	10
87	Effects of High Magnetic Fields on the Distribution and Alignment of Primary Phases in an Al-12Si-11.8Mg-6.5Ti Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 1863-1869.	1.1	9
88	Formation of icosahedral and hcp structures in bimetallic Co–Cu clusters during the freezing processes. Materials Letters, 2012, 88, 126-128.	1.3	9
89	EFFECTS OF HIGH MAGNETIC FIELD ON THE STRUCTURAL EVOLUTION AND MAGNETIC PROPERTIES OF NANOCRYSTALLINE Ni FILMS. Nano, 2014, 09, 1450025.	0.5	9
90	Effect of cooling rate on magnetostriction gradients of Tb0.27Dy0.73Fe1.95 alloys solidified in high magnetic field gradients. AIP Advances, 2016, 6, .	0.6	9

#	Article	IF	CITATIONS
91	Polyoxometalate Compound-Derived MoP-Based Electrocatalyst with N-Doped Mesoporous Carbon as Matrix, a Cathode Material for Zn–H ⁺ Battery. ACS Applied Materials & Interfaces, 2018, 10, 42320-42327.	4.0	9
92	Structural Optimization of Electromagnetic Swirling Flow in Nozzle of Slab Continuous Casting. Acta Metallurgica Sinica (English Letters), 2018, 31, 1317-1326.	1.5	9
93	Transition of the exchange bias effect from in-plane to out-of-plane in La _{0.7} Sr _{0.3} MnO ₃ :NiO nanocomposite thin films. Journal of Materials Chemistry C, 2019, 7, 6091-6098.	2.7	9
94	Facile liquid-assisted one-step sintering synthesis of superfine L1 ₀ -FePt nanoparticles. RSC Advances, 2019, 9, 36034-36039.	1.7	9
95	Effects of high magnetic field annealing on FePt nanoparticles with shape-anisotropy and element-distribution-anisotropy. RSC Advances, 2021, 11, 10463-10467.	1.7	9
96	Thermoelectric Performance Enhancement of Film by Pulse Electric Field and Multiâ€Nanocomposite Strategy. Small, 2021, 17, e2100554.	5.2	9
97	In-Situ Fabrication of Bi/BiMn–BiMn–Mn Graded Materials by High Magnetic Field Gradients. ISIJ International, 2010, 50, 1947-1949.	0.6	8
98	High magnetic-field-induced solute interception among dendrite arms in the mushy zone of a Mn–Sb alloy. Journal of Applied Physics, 2018, 124, .	1.1	8
99	Improvement of Thermoelectric Properties of Evaporated ZnO:Al Films by CNT and Au Nanocomposites. Journal of Physical Chemistry C, 2020, 124, 12713-12722.	1.5	8
100	The accelerating nanoscale Kirkendall effect in Co films–native oxide Si (100) system induced by high magnetic fields. Journal of Materials Science and Technology, 2020, 46, 127-135.	5.6	8
101	Role of intrinsic defects on thermoelectric properties of ZnO:Al films. Ceramics International, 2021, 47, 17760-17767.	2.3	8
102	Progress in research on diffusional phase transformations of Fe–C alloys under high magnetic fields. Journal of Iron and Steel Research International, 2022, 29, 707-718.	1.4	8
103	The impact of precursor thickness and surface roughness on the power factor of Cu2ZnSnS4 (CZTS) at near room temperature: Spin-coating deposition. Superlattices and Microstructures, 2021, 160, 107091.	1.4	8
104	Constitutional supercooling and corresponding microstructure transition triggered by high magnetic field gradient during directional solidification of Al-Fe eutectic alloy. Materials Characterization, 2022, 188, 111920.	1.9	8
105	Solidified microstructure evolution of Mn-Sb near-eutectic alloy under high magnetic field conditions. Journal of Materials Research, 2009, 24, 2331-2337.	1.2	7
106	Tunable phase formation in Ni–Fe thin films at nanoscale using high magnetic fields. Vacuum, 2014, 106, 75-78.	1.6	7
107	Formation of bcc and fcc during the coalescence of free and supported Fe and Ni clusters. Physical Chemistry Chemical Physics, 2015, 17, 21729-21739.	1.3	7
108	Promoting inter-diffusion behavior of Co/Si (100) films by high magnetic field annealing. Vacuum, 2015, 116, 110-114.	1.6	7

#	Article	IF	CITATIONS
109	Magnetostrictive gradient in Tb0.27Dy0.73Fe1.95 induced by high magnetic field gradient applied during solidification. Functional Materials Letters, 2016, 09, 1650003.	0.7	7
110	Magnetostriction induced by crystallographic orientation and morphological alignment in a TbFe2-based alloy. Journal of Applied Physics, 2019, 125, .	1.1	7
111	Effect of growth modes on electrical and thermal transport of thermoelectric ZnO:Al films. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2020, 76, 259-266.	O.5	7
112	Crystallographic orientation of primary and eutectic phases in a hypoeutectic Mn–Sb alloy induced by solidification in high magnetic fields. Journal of Applied Crystallography, 2019, 52, 945-950.	1.9	7
113	Nucleation and growth mechanism of dendrite-free Ni–Cu catalysts by magneto-electrodeposition for the hydrogen evolution reaction. New Journal of Chemistry, 2022, 46, 5246-5255.	1.4	7
114	Mechanism of formation of aligned two-phase microstructure in a Fe-0.25wt%C alloy under high magnetic field gradients. Philosophical Magazine Letters, 2009, 89, 695-700.	0.5	6
115	Transparent ZnO:Al2O3 films with high breakdown voltage and resistivity. Applied Physics Letters, 2018, 113, .	1.5	6
116	Self-Supported Bi ₂ MoO ₆ Nanosheet Arrays as Advanced Integrated Electrodes for Li-Ion Batteries with Super High Capacity and Long Cycle Life. Nano, 2018, 13, 1850066.	0.5	6
117	Combination of Zn–NiCo ₂ S ₄ and Zn–Air Batteries at the Cell Level: A Hybrid Battery Makes the Best of Both Worlds. ACS Sustainable Chemistry and Engineering, 0, , .	3.2	6
118	Influence of static magnetic field on the heterogeneous nucleation behavior of Al on single crystal Al2O3 substrate. Materialia, 2020, 13, 100847.	1.3	6
119	Experimental Study of Macrostructure and Segregation by a Novel Electromagnetic Nozzle Swirling Flow Combined with Electromagnetic Stirring in Continuous Casting. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2021, 52, 1207-1212.	1.0	6
120	Improving the ordering and coercivity of L10-FePt nanoparticles by introducing PtAg metastable phase. Journal of Alloys and Compounds, 2021, 870, 159384.	2.8	6
121	Effects of an ultra-high magnetic field up to 25 T on the phase transformations of undercooled Co-B eutectic alloy. Journal of Materials Science and Technology, 2021, 93, 79-88.	5.6	6
122	NUMERICAL SIMULATION OF SWIRLING FLOW INDIVERGENT SUBMERGED ENTRY NOZZLE IN ROUNDBILLET CONTINUOUS CASTING OF STEEL. Jinshu Xuebao/Acta Metallurgica Sinica, 2013, 49, 871.	0.3	6
123	Control of the Alloying Element Distribution in Al-Alloys by High Magnetic Fields. Materials Science Forum, 2007, 539-543, 457-462.	0.3	5
124	Alignment of primary Al3Ni phases in hypereutectic Al-Ni alloys with various compositions under high magnetic fields. Science in China Series D: Earth Sciences, 2009, 52, 857-863.	0.9	5
125	Effects of a high magnetic field on structure evolution and properties of the molecular beam vapor deposited Fe60Ni40 nanoparticles thin films. Journal of Magnetism and Magnetic Materials, 2014, 372, 91-96.	1.0	5
126	Interdiffusion and magnetic properties of Co/Cu/Co trilayers produced by high magnetic field annealing. Materials Chemistry and Physics, 2016, 182, 481-487.	2.0	5

#	Article	IF	CITATIONS
127	Effect of Al2O3 and Au dopants on the structure and electrical properties of ZnO by oxidizing Zn film. Ceramics International, 2016, 42, 19141-19146.	2.3	5
128	Post-treatment Method for the Synthesis of Monodisperse Binary FePt-Fe3O4 Nanoparticles. Nanoscale Research Letters, 2017, 12, 540.	3.1	5
129	Hyperbranched Co ₂ P nanocrystals with 3D morphology for hydrogen generation in both alkaline and acidic media. RSC Advances, 2019, 9, 20612-20617.	1.7	5
130	Photo-controlled exchange bias in CoO@Co–Fe PBA core–shell heterostructures. Journal of Materials Chemistry C, 2021, 10, 244-250.	2.7	5
131	Effect of the Ag evolution process on ordering the transition for <i>L</i> 1 ₀ -FePt nanoparticles synthesized by Ag addition. New Journal of Chemistry, 2022, 46, 6747-6755.	1.4	5
132	Improvement of compressive strength and ductility in NiAl based eutectic alloy by uniform high magnetic field treatment. Intermetallics, 2011, 19, 187-190.	1.8	4
133	Enhancement of magnetostrictive performance of Tb0.27Dy0.73Fe1.95 by solidification in high magnetic field gradient. Journal of Alloys and Compounds, 2018, 741, 1006-1011.	2.8	4
134	Solid-State Dewetting in Polycrystalline Co Films on Native Oxide Si(100) by Kirkendall Effects. Journal of Physical Chemistry C, 2019, 123, 19572-19578.	1.5	4
135	Thickness-dependent thermoelectric properties of evaporated ZnO:Al films assisted by RF atomic source. Journal of Applied Physics, 2020, 127, .	1.1	4
136	Size effect on the frozen structures of Co clusters. Materials Letters, 2012, 69, 63-65.	1.3	3
137	Magnetostriction Increase of Tb 0.3 Dy 0.7 Fe 1.95 Alloy Prepared by Solidification in High Magnetic Fields. Chinese Physics Letters, 2015, 32, 037502.	1.3	3
138	Tuning the Shape of FePt Nanoparticles by Applying High Magnetic Field in Wet-Chemical Process. Journal of Nanoscience and Nanotechnology, 2017, 17, 7003-7007.	0.9	3
139	Effect of cooling rate on magnetic domain structure and magnetic properties of Tb0.27Dy0.73Fe1.95 alloys solidified in high magnetic field. AIP Advances, 2018, 8, .	0.6	3
140	Microstructural Evolution and Solute Migration in the Mushy Zone of Peritectic Al-18 At. Pct Ni Alloy in High Magnetic Fields. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 726-740.	1.1	3
141	Macrosegregation Prediction by Evaluating Liquid Level Fluctuation in Round Billet Continuous Casting with Electromagnetic Nozzle Swirling Flow. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2021, 52, 3571-3575.	1.0	3
142	Reactive Diffusion at the Liquid Al/Solid Cu Interface in a High Magnetic Field. Materials and Manufacturing Processes, 2011, 26, 821-825.	2.7	2
143	Microstructural evolution of the oxidized ZnO:Cu films tuned by high magnetic field. Journal of Alloys and Compounds, 2018, 753, 673-678.	2.8	2
144	Size-dependent cuboctahedron-icosahedron transformations of Co-based bimetallic by molecular dynamics simulation. Materials Letters, 2018, 232, 8-10.	1.3	2

#	Article	IF	CITATIONS
145	Magnetic transition and magnetocaloric effect of Gd4Sb3-xRx (R=Si, Ge, Sn, 0 ≤ ≤0.75) compounds. AIP Advances, 2019, 9, 035206.	0.6	2
146	Effects of Cu contents on defects formation in molecular dynamics simulations of ZnO:Cu films deposition. Applied Surface Science, 2019, 465, 67-72.	3.1	2
147	Three-step method with self-sacrificial Co to prepare a uniform 5 nm-scale Pt catalyst for the oxygen reduction reaction. New Journal of Chemistry, 2021, 45, 13088-13095.	1.4	2
148	EFFECT OF HIGH MAGNETIC FIELD ON CRYSTALORIENTATION,MORPHOLOGY AND MAGNETO-STRICTION OF TbFe2AND Tbo.27DYo.7sFe1.s5 ALLOYSDURING HEAT TREATMENT PROCESS. Jinshu Xuebao/Acta Metallurgica Sinica, 2013, 49, 1148.	0.3	2
149	Crystal orientation induced by high magnetic fields during peritectic reaction of alloys. Materials Characterization, 2022, 183, 111608.	1.9	2
150	Magnetic flux density-determined oriented attachment growth of FePt nanowires. CrystEngComm, 2022, 24, 4320-4326.	1.3	2
151	Interface profile evolution between binary immiscible fluids induced by high magnetic field gradients. Science China: Physics, Mechanics and Astronomy, 2010, 53, 1319-1324.	2.0	1
152	Phase Alignment Based on Crystal Orientation In Mn-Sb and Al-Ni Alloys Induced by High Magnetic Fields. Materials Science Forum, 0, 638-642, 2805-2810.	0.3	1
153	Alignment of Primary Al ₃ Ni Phases in Hypereutectic Al-Ni Alloys with Various Compositions under High Magnetic Field Gradients. Materials Science Forum, 0, 649, 165-169.	0.3	1
154	Effects of a High Magnetic Field on the Solidification Behavior of Binary Al-Si and Ag-Cu Systems. Advanced Materials Research, 0, 421, 792-795.	0.3	1
155	Crystal Orientation and Magnetic Anisotropy of Mn–Sb Alloy Induced by High Magnetic Field During Treatment in Semisolid State. IEEE Transactions on Magnetics, 2014, 50, 1-3.	1.2	1
156	Effect of Cooling Rate on Crystal Orientation, and Magnetic and Magnetostrictive Properties of TbFe ₂ -Based Alloy Treated in Semisolid State Under a High Magnetic Field. IEEE Transactions on Magnetics, 2015, 51, 1-6.	1.2	1
157	Effects of High Magnetic Field Postannealing on Microstructure and Properties of Pulse Electrodeposited Co-Ni-P Films. Advances in Materials Science and Engineering, 2016, 2016, 1-6.	1.0	1
158	Effects of Cu–Zn phases on electronic properties in ZnO:Cu films. Journal of the American Ceramic Society, 2019, 102, 4170-4177.	1.9	1
159	Nanostructure Evolution of Co-Evaporated FeNi–SiO2 Magnetic Nanoparticle Film Prepared Under High Magnetic Field. IEEE Transactions on Magnetics, 2019, 55, 1-4.	1.2	1
160	Microstructure development in eutectic Al–Fe alloy during directional solidification under high magnetic fields at different growth velocities. Journal of Materials Science, 2021, 56, 16134-16144.	1.7	1
161	Alignment of Fe-rich Primary Phase in Cu–Fe Alloy Solidified under a High Magnetic Field. ISIJ International, 2011, 51, 1819-1824.	0.6	1
162	High magnetic field-assisted synthesis of a pine-like hyperbranched structure alpha-Fe2O3 for enhanced magnetic properties and photocatalytic activity. Nano Structures Nano Objects, 2022, 31, 100896.	1.9	1

#	Article	IF	CITATIONS
163	Effects of different magnetic flux densities on microstructure and magnetic properties of molecular-beam-vapor-deposited nanocrystalline Fe64Ni36 thin films. Frontiers of Materials Science, 2015, 9, 163-169.	1.1	0
164	Effects of High Magnetic Fields on Microstructures and Thermoelectric Properties of Zn-Sb Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 2916-2921.	1.1	0
165	Magnetic Domain and Magnetic Properties of Tb–Dy–Fe Alloys Directionally Solidified and Heat Treated in High Magnetic Fields. IEEE Transactions on Magnetics, 2021, 57, 1-4.	1.2	0