Jan Haubrich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5147302/publications.pdf

Version: 2024-02-01

51 papers	2,438 citations	257450 24 h-index	206112 48 g-index
1 1			
53 all docs	53 docs citations	53 times ranked	2552 citing authors

#	Article	IF	CITATIONS
1	Influence of laser-generated surface micro-structuring on the intrinsically bonded hybrid system CFRP-EN AW 6082-T6 on its corrosion properties. Composite Structures, 2022, 285, 115238.	5.8	1
2	Micromechanical behavior of annealed Ti-6Al-4V produced by Laser Powder Bed Fusion. European Journal of Materials, 2022, 2, 186-201.	2.6	3
3	Separation of the impact of residual stress and microstructure on the fatigue performance of LPBF Ti-6Al-4V at elevated temperature. International Journal of Fatigue, 2021, 148, 106239.	5.7	28
4	The effect of build direction and geometric optimization in laser powder bed fusion of Inconel 718 structures with internal channels. Materials and Design, 2021, 207, 109858.	7.0	24
5	Interfaceâ€Mediated Twinningâ€Induced Plasticity in a Fine Hexagonal Microstructure Generated by Additive Manufacturing. Advanced Materials, 2021, 33, e2105096.	21.0	17
6	Pandora's Box–Influence of Contour Parameters on Roughness and Subsurface Residual Stresses in Laser Powder Bed Fusion of Ti-6Al-4V. Materials, 2020, 13, 3348.	2.9	18
7	Ultrafine eutectic Ti-Fe-based alloys processed by additive manufacturing – A new candidate for high temperature applications. Applied Materials Today, 2020, 20, 100767.	4.3	22
8	Pyrometric-Based Melt Pool Monitoring Study of CuCr1Zr Processed Using L-PBF. Materials, 2020, 13, 4626.	2.9	11
9	Mapping the geometry of Ti-6Al-4V: From martensite decomposition to localized spheroidization during selective laser melting. Scripta Materialia, 2020, 182, 48-52.	5 . 2	40
10	Electrodeposition of titanium–vanadium alloys from chloride-based molten salts: influence of electrolyte chemistry and deposition potential on composition, morphology and microstructure. Journal of Applied Electrochemistry, 2020, 50, 355-366.	2.9	10
11	Connecting Diffraction-Based Strain with Macroscopic Stresses in Laser Powder Bed Fused Ti-6Al-4V. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 3194-3204.	2.2	15
12	Classification of Defect Types in SLM Ti-6Al-V4 by X-ray Refraction Topography. Materials Performance and Characterization, 2020, 9, 20190080.	0.3	4
13	High Resolution 3D and 4D Characterization of Microstructure Formation in Novel Ti Alloys for Additive Manufacturing. Microscopy and Microanalysis, 2019, 25, 384-385.	0.4	2
14	The role of lattice defects, element partitioning and intrinsic heat effects on the microstructure in selective laser melted Ti-6Al-4V. Acta Materialia, 2019, 167, 136-148.	7.9	160
15	Exploring the Correlation between Subsurface Residual Stresses and Manufacturing Parameters in Laser Powder Bed Fused Ti-6Al-4V. Metals, 2019, 9, 261.	2.3	38
16	New aspects about the search for the most relevant parameters optimizing SLM materials. Additive Manufacturing, 2019, 25, 325-334.	3.0	60
17	An in situ investigation of the deformation mechanisms in a \hat{I}^2 -quenched Ti-5Al-5V-5Mo-3Cr alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 717, 134-143.	5 . 6	30
18	Effect of vanadium ion valence state on the deposition behaviour in molten salt electrolysis. Journal of Applied Electrochemistry, 2018, 48, 427-434.	2.9	11

#	Article	IF	CITATIONS
19	Buried interfaces – A systematic study to characterize an adhesive interface at multiple scales. Applied Surface Science, 2018, 433, 546-555.	6.1	10
20	Interfacial Reactions and Fracture Behavior of Ti Alloy-Ag28Cu Brazing Joints: Influence of Titanium Alloy Composition. Metals, 2018, 8, 830.	2.3	5
21	Peritectic titanium alloys for 3D printing. Nature Communications, 2018, 9, 3426.	12.8	172
22	Anodic dissolution of vanadium in molten LiCl–KCl–TiCl2. Journal of Applied Electrochemistry, 2017, 47, 573-581.	2.9	6
23	Inducing Stable \hat{l}_{\pm} + \hat{l}^2 Microstructures during Selective Laser Melting of Ti-6Al-4V Using Intensified Intrinsic Heat Treatments. Materials, 2017, 10, 268.	2.9	110
24	An Assessment of Subsurface Residual Stress Analysis in SLM Ti-6Al-4V. Materials, 2017, 10, 348.	2.9	86
25	High energy near- and far-field ptychographic tomography at the ESRF. , 2017, , .		1
26	Correlation between porosity and processing parameters in TiAl6V4 produced by selective laser melting. Materials and Design, 2016, 105, 160-170.	7.0	533
27	Corrigendum to "Correlation between porosity and processing parameters in TiAl6V4 produced by selective laser melting―[Materials and Design 105 (2016) 160–170]. Materials and Design, 2016, 112, 160-161.	7.0	12
28	Molecular Imaging of Reductive Coupling Reactions: Interstitial-Mediated Coupling of Benzaldehyde on Reduced TiO ₂ (110). ACS Nano, 2011, 5, 834-843.	14.6	35
29	Theoretical Study of O-Assisted Selective Coupling of Methanol on Au(111). Journal of Physical Chemistry C, 2011, 115, 3703-3708.	3.1	95
30	The Role of Surface and Subsurface Point Defects for Chemical Model Studies on TiO ₂ : A Firstâ∈Principles Theoretical Study of Formaldehyde Bonding on Rutile TiO ₂ (110). Chemistry - A European Journal, 2011, 17, 4496-4506.	3.3	72
31	Carbonyl Coupling: Defects and O ₂ Make or Break the Essential Reaction Intermediate on Titanium Dioxide. Chemistry - A European Journal, 2011, 17, 8309-8312.	3.3	7
32	Vapour-phase gold-surface-mediated coupling of aldehydes with methanol. Nature Chemistry, 2010, 2, 61-65.	13.6	158
33	Oxygen-assisted cross-coupling of methanol with alkyl alcohols on metallic gold. Chemical Science, 2010, 1, 310.	7.4	58
34	<i>In Situ</i> Ambient Pressure Studies of the Chemistry of NO ₂ and Water on Rutile TiO ₂ (110). Langmuir, 2010, 26, 2445-2451.	3.5	49
35	Titelbild: Selectivity Control in Gold-Mediated Esterification of Methanol (Angew. Chem. 23/2009). Angewandte Chemie, 2009, 121, 4141-4141.	2.0	0
36	Selectivity Control in Goldâ€Mediated Esterification of Methanol. Angewandte Chemie - International Edition, 2009, 48, 4206-4209.	13.8	167

#	Article	IF	CITATIONS
37	Cover Picture: Selectivity Control in Gold-Mediated Esterification of Methanol (Angew. Chem. Int. Ed.) Tj ETQq1	1 0,784314 13.8	rgBT /Over
38	Acrolein coupling on reduced TiO2(110): The effect of surface oxidation and the role of subsurface defects. Surface Science, 2009, 603, 1010-1017.	1.9	19
39	Surface-Mediated Self-Coupling of Ethanol on Gold. Journal of the American Chemical Society, 2009, 131, 5757-5759.	13.7	119
40	McMurry Chemistry on TiO ₂ (110): Reductive Câ•€ Coupling of Benzaldehyde Driven by Titanium Interstitials. Journal of the American Chemical Society, 2009, 131, 15026-15031.	13.7	45
41	Adsorption of Simple Alkenes on Pt(111) and Ptâ^'Sn Surface Alloys: Bond Strength versus Heat of Adsorption. Journal of Physical Chemistry C, 2008, 112, 14693-14695.	3.1	25
42	Hydrogenation of 1,3-butadiene on $Pd(111)$ and $PdSn/Pd(111)$ surface alloys under UHV conditions. Journal of Catalysis, 2007, 251, 123-130.	6.2	35
43	Determination of the crotonaldehyde structures on Pt and PtSn surface alloys from a combined experimental and theoretical study. Chemical Physics Letters, 2006, 433, 188-192.	2.6	27
44	First gravimetric detection of ethene utilizing metallo-supramolecular macrocycles as sensor-active substances. Sensors and Actuators B: Chemical, 2006, 119, 302-307.	7.8	12
45	The electronic spectrum of linear HC9H+. International Journal of Quantum Chemistry, 2004, 100, 53-58.	2.0	2
46	A comparative MRD-CI study of the electronic spectrum of linear and cyclic C8+ clusters. Journal of Molecular Spectroscopy, 2004, 228, 31-37.	1.2	9
47	Ab initio MRD-CI study of the electronic spectrum of linear C5H+. Computational and Theoretical Chemistry, 2003, 623, 335-340.	1.5	3
48	A Comparative ab Initio Multireference Single and Double Excitation Configuration Interaction Study of the Electronic Spectra of Low-Lying Linear and Cyclic C5H Isomers. Journal of Physical Chemistry A, 2002, 106, 8201-8206.	2.5	13
49	The electronic spectrum of linear and cyclic C6+. A theoretical study. Physical Chemistry Chemical Physics, 2002, 4, 2891-2896.	2.8	14
50	The electronic spectrum of linear HC9H. Chemical Physics, 2002, 280, 205-210.	1.9	9
51	In Situ Highâ€Energy Synchrotron Xâ€Ray Diffraction Reveals the Role of Texture on the Activation of Slip and Twinning during Deformation of Laser Powder Bed Fusion Ti–6Al–4V. Advanced Engineering Materials, 0, , 2001556.	3.5	8