Xi-Liang Luo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/514685/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Application of Nanoparticles in Electrochemical Sensors and Biosensors. Electroanalysis, 2006, 18, 319-326.	1.5	1,158
2	Electrical biosensors and the label free detection of protein disease biomarkers. Chemical Society Reviews, 2013, 42, 5944.	18.7	381
3	A glucose biosensor based on chitosan–glucose oxidase–gold nanoparticles biocomposite formed by one-step electrodeposition. Analytical Biochemistry, 2004, 334, 284-289.	1.1	369
4	Electrically Controlled Drug Delivery from Graphene Oxide Nanocomposite Films. ACS Nano, 2014, 8, 1834-1843.	7.3	356
5	Antifouling Strategies for Selective <i>In Vitro</i> and <i>In Vivo</i> Sensing. Chemical Reviews, 2020, 120, 3852-3889.	23.0	325
6	Emerging Pt-based electrocatalysts with highly open nanoarchitectures for boosting oxygen reduction reaction. Nano Today, 2018, 21, 91-105.	6.2	285
7	Electrochemical Deposition: An Advanced Approach for Templated Synthesis of Nanoporous Metal Architectures. Accounts of Chemical Research, 2018, 51, 1764-1773.	7.6	277
8	Electrochemically deposited chitosan hydrogel for horseradish peroxidase immobilization through gold nanoparticles self-assembly. Biosensors and Bioelectronics, 2005, 21, 190-196.	5.3	265
9	Highly stable carbon nanotube doped poly(3,4-ethylenedioxythiophene) for chronic neural stimulation. Biomaterials, 2011, 32, 5551-5557.	5.7	225
10	Electrochemically deposited nanocomposite of chitosan and carbon nanotubes for biosensor application. Chemical Communications, 2005, , 2169.	2.2	219
11	Carbon nanotube nanoreservior for controlled release of anti-inflammatory dexamethasone. Biomaterials, 2011, 32, 6316-6323.	5.7	216
12	A simple method to fabricate a chitosan-gold nanoparticles film and its application in glucose biosensor. Bioelectrochemistry, 2007, 70, 342-347.	2.4	203
13	A novel glucose ENFET based on the special reactivity of MnO2 nanoparticles. Biosensors and Bioelectronics, 2004, 19, 1295-1300.	5.3	195
14	An optimised electrochemical biosensor for the label-free detection of C-reactive protein in blood. Biosensors and Bioelectronics, 2013, 39, 94-98.	5.3	192
15	Oxygen vacancies confined in ultrathin nickel oxide nanosheets for enhanced electrocatalytic methanol oxidation. Applied Catalysis B: Environmental, 2019, 244, 1096-1102.	10.8	180
16	PEGylated Polyaniline Nanofibers: Antifouling and Conducting Biomaterial for Electrochemical DNA Sensing. ACS Applied Materials & Interfaces, 2017, 9, 2914-2923.	4.0	179
17	Enhanced catalytic and dopamine sensing properties of electrochemically reduced conducting polymer nanocomposite doped with pure graphene oxide. Biosensors and Bioelectronics, 2014, 58, 153-156.	5.3	176
18	Porous Organic Frameworks: Advanced Materials in Analytical Chemistry. Advanced Science, 2018, 5, 1801116.	5.6	162

#	Article	IF	CITATIONS
19	Nanomaterial-doped conducting polymers for electrochemical sensors and biosensors. Journal of Materials Chemistry B, 2018, 6, 4173-4190.	2.9	148
20	A novel electrochemical immunosensor for highly sensitive detection of prostate-specific antigen using 3D open-structured PtCu nanoframes for signal amplification. Biosensors and Bioelectronics, 2019, 126, 187-192.	5.3	144
21	Development of Sulfonicâ€Acidâ€Functionalized Mesoporous Materials: Synthesis and Catalytic Applications. Chemistry - A European Journal, 2019, 25, 1614-1635.	1.7	139
22	Mixed Self-Assembled Aptamer and Newly Designed Zwitterionic Peptide as Antifouling Biosensing Interface for Electrochemical Detection of alpha-Fetoprotein. ACS Sensors, 2017, 2, 490-494.	4.0	130
23	Enhancement of a conducting polymer-based biosensor using carbon nanotube-doped polyaniline. Analytica Chimica Acta, 2006, 575, 39-44.	2.6	129
24	The label free picomolar detection of insulin in blood serum. Biosensors and Bioelectronics, 2013, 39, 21-25.	5.3	124
25	Polydopamine Nanosphere/Gold Nanocluster (Au NC)-Based Nanoplatform for Dual Color Simultaneous Detection of Multiple Tumor-Related MicroRNAs with DNase-I-Assisted Target Recycling Amplification. Analytical Chemistry, 2018, 90, 4039-4045.	3.2	122
26	Recent advancements in biocompatible inorganic nanoparticles towards biomedical applications. Biomaterials Science, 2018, 6, 726-745.	2.6	121
27	A review of ratiometric electrochemical sensors: From design schemes to future prospects. Sensors and Actuators B: Chemical, 2018, 274, 501-516.	4.0	118
28	A signal-on photoelectrochemical aptasensor for chloramphenicol assay based on 3D self-supporting Agl/Ag/BiOI Z-scheme heterojunction arrays. Biosensors and Bioelectronics, 2021, 181, 113158.	5.3	118
29	Zwitterionic peptide anchored to conducting polymer PEDOT for the development of antifouling and ultrasensitive electrochemical DNA sensor. Biosensors and Bioelectronics, 2017, 92, 396-401.	5.3	114
30	Glucose biosensor based on ENFET doped with SiO2 nanoparticles. Sensors and Actuators B: Chemical, 2004, 97, 249-255.	4.0	109
31	Rapid room-temperature fabrication of ultrathin Ni(OH)2 nanoflakes with abundant edge sites for efficient urea oxidation. Applied Catalysis B: Environmental, 2019, 259, 118020.	10.8	108
32	A highly sensitive biosensor for tumor maker alpha fetoprotein based on poly(ethylene glycol) doped conducting polymer PEDOT. Biosensors and Bioelectronics, 2016, 79, 736-741.	5.3	107
33	Electrochemical Aptasensor for Ultralow Fouling Cancer Cell Quantification in Complex Biological Media Based on Designed Branched Peptides. Analytical Chemistry, 2019, 91, 8334-8340.	3.2	106
34	Reagentless Glucose Biosensor Based on the Direct Electrochemistry of Glucose Oxidase on Carbon Nanotube-Modified Electrodes. Electroanalysis, 2006, 18, 1131-1134.	1.5	102
35	A Glucose-Assisted Hydrothermal Reaction for Directly Transforming Metal–Organic Frameworks into Hollow Carbonaceous Materials. Chemistry of Materials, 2018, 30, 4401-4408. 	3.2	102
36	High-activity Fe3O4 nanozyme as signal amplifier: A simple, low-cost but efficient strategy for ultrasensitive photoelectrochemical immunoassay. Biosensors and Bioelectronics, 2019, 127, 64-71.	5.3	102

#	Article	IF	CITATIONS
37	Electrochemical Biosensor with Enhanced Antifouling Capability for COVID-19 Nucleic Acid Detection in Complex Biological Media. Analytical Chemistry, 2021, 93, 5963-5971.	3.2	102
38	Pure graphene oxide doped conducting polymer nanocomposite for bio-interfacing. Journal of Materials Chemistry B, 2013, 1, 1340.	2.9	101
39	Detection of Cardiac Biomarkers Using Single Polyaniline Nanowire-Based Conductometric Biosensors. Biosensors, 2012, 2, 205-220.	2.3	100
40	A conducting polymer PEDOT:PSS hydrogel based wearable sensor for accurate uric acid detection in human sweat. Sensors and Actuators B: Chemical, 2021, 348, 130674.	4.0	99
41	Ultrasensitive Label Free Electrical Detection of Insulin in Neat Blood Serum. Analytical Chemistry, 2013, 85, 4129-4134.	3.2	98
42	Evaluation of poly(3,4-ethylenedioxythiophene)/carbon nanotube neural electrode coatings for stimulation in the dorsal root ganglion. Journal of Neural Engineering, 2015, 12, 016008.	1.8	98
43	Electrodeposited Conducting Polyaniline Nanowire Arrays Aligned on Carbon Nanotubes Network for High Performance Supercapacitors and Sensors. Electrochimica Acta, 2016, 199, 234-241.	2.6	98
44	Application of MnO2 nanoparticles as an eliminator of ascorbate interference to amperometric glucose biosensors. Electrochemistry Communications, 2004, 6, 1169-1173.	2.3	95
45	A prostate-specific antigen electrochemical immunosensor based on Pd NPs functionalized electroactive Co-MOF signal amplification strategy. Biosensors and Bioelectronics, 2019, 132, 97-104.	5.3	93
46	Molecularly imprinted electrochemical sensor for propyl gallate based on PtAu bimetallic nanoparticles modified graphene–carbon nanotube composites. Biosensors and Bioelectronics, 2015, 68, 563-569.	5.3	91
47	Highly sensitive single polyaniline nanowire biosensor for the detection of immunoglobulin G and myoglobin. Biosensors and Bioelectronics, 2011, 26, 3297-3302.	5.3	89
48	Electrodeposited conducting polymer PEDOT doped with pure carbon nanotubes for the detection of dopamine in the presence of ascorbic acid. Sensors and Actuators B: Chemical, 2013, 188, 405-410.	4.0	89
49	A label-free electrochemical DNA biosensor for breast cancer marker BRCA1 based on self-assembled antifouling peptide monolayer. Sensors and Actuators B: Chemical, 2017, 244, 742-749.	4.0	89
50	Low Fouling Protein Detection in Complex Biological Media Supported by a Designed Multifunctional Peptide. ACS Sensors, 2018, 3, 1210-1216.	4.0	89
51	Low fouling label-free DNA sensor based on polyethylene glycols decorated with gold nanoparticles for the detection of breast cancer biomarkers. Biosensors and Bioelectronics, 2015, 71, 51-56.	5.3	87
52	Ratiometric Antifouling Electrochemical Biosensors Based on Multifunctional Peptides and MXene Loaded with Au Nanoparticles and Methylene Blue. ACS Applied Materials & Interfaces, 2021, 13, 20388-20396.	4.0	86
53	A sensitive biosensor for lactate based on layer-by-layer assembling MnO2 nanoparticles and lactate oxidase on ion-sensitive field-effect transistors. Chemical Communications, 2005, , 792.	2.2	85
54	Electrochemical deposition of conducting polymer coatings on magnesium surfaces in ionic liquid. Acta Biomaterialia, 2011, 7, 441-446.	4.1	84

#	Article	IF	CITATIONS
55	Antifouling aptasensor for the detection of adenosine triphosphate in biological media based on mixed self-assembled aptamer and zwitterionic peptide. Biosensors and Bioelectronics, 2018, 101, 129-134.	5.3	84
56	Universal Design of Selectivity-Enhanced Photoelectrochemical Enzyme Sensor: Integrating Photoanode with Biocathode. Analytical Chemistry, 2018, 90, 10681-10687.	3.2	84
57	Electrochemiluminescence Energy Resonance Transfer System between RuSi Nanoparticles and Hollow Au Nanocages for Nucleic Acid Detection. Analytical Chemistry, 2018, 90, 10434-10441.	3.2	84
58	Fe-doped Ag2S with excellent peroxidase-like activity for colorimetric determination of H2O2. Journal of Alloys and Compounds, 2019, 785, 1189-1197.	2.8	84
59	Nickel nanoparticles modified conducting polymer composite of reduced graphene oxide doped poly(3,4-ethylenedioxythiophene) for enhanced nonenzymatic glucose sensing. Sensors and Actuators B: Chemical, 2015, 221, 606-613.	4.0	83
60	Fabrication of BSA@AuNC-Based Nanostructures for Cell Fluoresce Imaging and Target Drug Delivery. ACS Applied Materials & Interfaces, 2018, 10, 8947-8954.	4.0	83
61	Nanocomposite and Nanoporous Polyaniline Conducting Polymers Exhibit Enhanced Catalysis of Nitrite Reduction. Chemistry - A European Journal, 2007, 13, 2138-2143.	1.7	81
62	Ternary Electrochemiluminescence Nanostructure of Au Nanoclusters as a Highly Efficient Signal Label for Ultrasensitive Detection of Cancer Biomarkers. Analytical Chemistry, 2018, 90, 10024-10030.	3.2	81
63	Low fouling strategies for electrochemical biosensors targeting disease biomarkers. Analytical Methods, 2019, 11, 702-711.	1.3	81
64	Sponge-like nanostructured conducting polymers for electrically controlled drug release. Electrochemistry Communications, 2009, 11, 1956-1959.	2.3	79
65	Electrochemical determination of paracetamol based on Au@graphene core-shell nanoparticles doped conducting polymer PEDOT nanocomposite. Sensors and Actuators B: Chemical, 2018, 260, 778-785.	4.0	78
66	Three dimensional sea-urchin-like PdAuCu nanocrystals/ferrocene-grafted-polylysine as an efficient probe to amplify the electrochemical signals for ultrasensitive immunoassay of carcinoembryonic antigen. Biosensors and Bioelectronics, 2019, 132, 294-301.	5.3	77
67	A graphene oxide/conducting polymer nanocomposite for electrochemical dopamine detection: origin of improved sensitivity and specificity. Journal of Materials Chemistry B, 2014, 2, 5209-5219.	2.9	76
68	Dual-Mode Electrochemical Assay of Prostate-Specific Antigen Based on Antifouling Peptides Functionalized with Electrochemical Probes and Internal References. Analytical Chemistry, 2019, 91, 15846-15852.	3.2	73
69	Electrochemical Biosensors Capable of Detecting Biomarkers in Human Serum with Unique Long-Term Antifouling Abilities Based on Designed Multifunctional Peptides. Analytical Chemistry, 2020, 92, 7186-7193.	3.2	73
70	The robust electrochemical detection of a Parkinson's disease marker in whole blood sera. Chemical Science, 2012, 3, 3468.	3.7	72
71	Electrochemically controlled release based on nanoporous conducting polymers. Electrochemistry Communications, 2009, 11, 402-404.	2.3	71
72	Embedded Au Nanoparticles-Based Ratiometric Electrochemical Sensing Strategy for Sensitive and Reliable Detection of Copper Ions. Analytical Chemistry, 2019, 91, 12006-12013.	3.2	70

#	Article	IF	CITATIONS
73	Antifouling Peptide Hydrogel Based Electrochemical Biosensors for Highly Sensitive Detection of Cancer Biomarker HER2 in Human Serum. Analytical Chemistry, 2021, 93, 7355-7361.	3.2	70
74	A novel label-free electrochemical immunosensor for ultra-sensitively detecting prostate specific antigen based on the enhanced catalytic currents of oxygen reduction catalyzed by core-shell Au@Pt nanocrystals. Biosensors and Bioelectronics, 2018, 102, 276-281.	5.3	69
75	Ascorbic acid sensor based on ion-sensitive field-effect transistor modified with MnO2 nanoparticles. Analytica Chimica Acta, 2004, 512, 57-61.	2.6	68
76	Carbon nanotube doped poly(3,4-ethylenedioxythiophene) for the electrocatalytic oxidation and detection of hydroquinone. Sensors and Actuators B: Chemical, 2013, 176, 69-74.	4.0	68
77	Mixed Self-Assembly of Polyethylene Glycol and Aptamer on Polydopamine Surface for Highly Sensitive and Low-Fouling Detection of Adenosine Triphosphate in Complex Media. ACS Applied Materials & Interfaces, 2017, 9, 31153-31160.	4.0	67
78	Electrochemical synthesis of poly(3,4-ethylenedioxythiophene) doped with gold nanoparticles, and its application to nitrite sensing. Mikrochimica Acta, 2016, 183, 1235-1241.	2.5	65
79	Perylene diimide-functionalized CeO2 nanocomposite as a peroxidase mimic for colorimetric determination of hydrogen peroxide and glutathione. Mikrochimica Acta, 2019, 186, 332.	2.5	64
80	Gold nanoparticles and polyethylene glycols functionalized conducting polyaniline nanowires for ultrasensitive and low fouling immunosensing of alpha-fetoprotein. Biosensors and Bioelectronics, 2016, 86, 143-149.	5.3	63
81	Ultrasensitive and selective voltammetric aptasensor for dopamine based on a conducting polymer nanocomposite doped with graphene oxide. Mikrochimica Acta, 2015, 182, 1123-1129.	2.5	62
82	Coupling photoelectrochemical and electrochemical strategies in one probe electrode: Toward sensitive and reliable dual-signal bioassay for uracil-DNA glycosylase activity. Biosensors and Bioelectronics, 2019, 142, 111569.	5.3	62
83	Ultrathin nickel hydroxide nanosheets with a porous structure for efficient electrocatalytic urea oxidation. Journal of Materials Chemistry A, 2019, 7, 26364-26370.	5.2	62
84	A photoelectrochemical sensor for ultrasensitive dopamine detection based on single-layer NanoMoS2 modified gold electrode. Sensors and Actuators B: Chemical, 2017, 249, 83-89.	4.0	61
85	A morphology-based ultrasensitive multicolor colorimetric assay for detection of blood glucose by enzymatic etching of plasmonic gold nanobipyramids. Analytica Chimica Acta, 2019, 1071, 53-58.	2.6	61
86	Toward DNA electrochemical sensing by free-standing ZnO nanosheets grown on 2D thin-layered MoS2. Biosensors and Bioelectronics, 2017, 89, 538-544.	5.3	60
87	Aptamer induced multicoloured Au NCs-MoS2 "switch on―fluorescence resonance energy transfer biosensor for dual color simultaneous detection of multiple tumor markers by single wavelength excitation. Analytica Chimica Acta, 2017, 983, 173-180.	2.6	60
88	Ratiometric Electrogenerated Chemiluminescence Cytosensor Based on Conducting Polymer Hydrogel Loaded with Internal Standard Molecules. Analytical Chemistry, 2019, 91, 983-989.	3.2	59
89	Graphene oxide doped poly(3,4-ethylenedioxythiophene) modified with copper nanoparticles for high performance nonenzymatic sensing of glucose. Journal of Materials Chemistry B, 2015, 3, 556-561.	2.9	58
90	Designed antifouling peptides planted in conducting polymers through controlled partial doping for electrochemical detection of biomarkers in human serum. Biosensors and Bioelectronics, 2020, 164, 112317.	5.3	58

#	Article	IF	CITATIONS
91	Nitrogen doped carbon dots: mechanism investigation and their application for label free CA125 analysis. Journal of Materials Chemistry B, 2019, 7, 3053-3058.	2.9	57
92	Signal amplified strategy based on target-induced strand release coupling cleavage of nicking endonuclease for the ultrasensitive detection of ochratoxin A. Biosensors and Bioelectronics, 2013, 39, 145-151.	5.3	56
93	A facile ratiometric electrochemical strategy for ultrasensitive monitoring HER2 using polydopamine-grafted-ferrocene/reduced graphene oxide, Au@Ag nanoshuttles and hollow Ni@PtNi yolk-shell nanocages. Sensors and Actuators B: Chemical, 2021, 331, 129460.	4.0	56
94	Redox and Label-Free Array Detection of Protein Markers in Human Serum. Analytical Chemistry, 2014, 86, 5553-5558.	3.2	55
95	Sensitive SERS detection of miRNA via enzyme-free DNA machine signal amplification. Chemical Communications, 2016, 52, 10269-10272.	2.2	55
96	Nitrogen-doped graphene and conducting polymer PEDOT hybrids for flexible supercapacitor and electrochemical sensor. Electrochimica Acta, 2020, 355, 136772.	2.6	55
97	Enhanced electrochemical biosensing of alpha-fetoprotein based on three-dimensional macroporous conducting polymer polyaniline. Sensors and Actuators B: Chemical, 2018, 255, 2568-2574.	4.0	54
98	Well-dispersed Co3Fe7 alloy nanoparticles wrapped in N-doped defect-rich carbon nanosheets as a highly efficient and methanol-resistant catalyst for oxygen-reduction reaction. Journal of Colloid and Interface Science, 2020, 569, 277-285.	5.0	54
99	Highly sensitive label-free amperometric immunoassay of prostate specific antigen using hollow dendritic AuPtAg alloyed nanocrystals. Biosensors and Bioelectronics, 2018, 111, 47-51.	5.3	53
100	Low fouling electrochemical biosensors based on designed Y-shaped peptides with antifouling and recognizing branches for the detection of IgG in human serum. Biosensors and Bioelectronics, 2021, 178, 113016.	5.3	53
101	A polypeptide-mediated synthesis of green fluorescent gold nanoclusters for Fe3+ sensing and bioimaging. Journal of Colloid and Interface Science, 2017, 506, 386-392.	5.0	52
102	Gold Nanobipyramids as Dual-Functional Substrates for in Situ "Turn On―Analyzing Intracellular Telomerase Activity Based on Target-Triggered Plasmon-Enhanced Fluorescence. ACS Applied Materials & Interfaces, 2018, 10, 26851-26858.	4.0	52
103	Near infrared fluorescent dual ligand functionalized Au NCs based multidimensional sensor array for pattern recognition of multiple proteins and serum discrimination. Biosensors and Bioelectronics, 2017, 97, 203-207.	5.3	51
104	Patchy gold coated Fe3O4 nanospheres with enhanced catalytic activity applied for paper-based bipolar electrode-electrochemiluminescence aptasensors. Biosensors and Bioelectronics, 2018, 114, 44-51.	5.3	51
105	Ultrasensitive label-free electrochemical immunoassay of carbohydrate antigen 15-3 using dendritic Au@Pt nanocrystals/ferrocene-grafted-chitosan for efficient signal amplification. Sensors and Actuators B: Chemical, 2019, 292, 164-170.	4.0	51
106	Designed zwitterionic peptide combined with sacrificial Fe-MOF for low fouling and highly sensitive electrochemical detection of T4 polynucleotide kinase. Sensors and Actuators B: Chemical, 2020, 305, 127329.	4.0	50
107	CdZnTeS quantum dots based electrochemiluminescent image immunoanalysis. Biosensors and Bioelectronics, 2018, 117, 145-152.	5.3	49
108	Ultrahighly Efficient and Stable Fluorescent Gold Nanoclusters Coated with Screened Peptides of Unique Sequences for Effective Protein and Serum Discrimination. Analytical Chemistry, 2019, 91, 13947-13952.	3.2	48

#	Article	IF	CITATIONS
109	Designed Three-in-One Peptides with Anchoring, Antifouling, and Recognizing Capabilities for Highly Sensitive and Low-Fouling Electrochemical Sensing in Complex Biological Media. Analytical Chemistry, 2020, 92, 5795-5802.	3.2	48
110	Anti-Fouling Magnetic Beads Combined with Signal Amplification Strategies for Ultra-Sensitive and Selective Electrochemiluminescence Detection of MicroRNAs in Complex Biological Media. Analytical Chemistry, 2021, 93, 10679-10687.	3.2	48
111	Poly(3,4-ethylenedioxythiophene)-ionic liquid coating improves neural recording and stimulation functionality of MEAs. Journal of Materials Chemistry C, 2015, 3, 6515-6524.	2.7	47
112	Simple one-pot aqueous synthesis of 3D superstructured PtCoCuPd alloyed tripods with hierarchical branches for ultrasensitive immunoassay of cardiac troponin I. Biosensors and Bioelectronics, 2019, 145, 111638.	5.3	47
113	Antifouling and ultrasensitive biosensing interface based on self-assembled peptide and aptamer on macroporous gold for electrochemical detection of immunoglobulin E in serum. Analytical and Bioanalytical Chemistry, 2018, 410, 5871-5878.	1.9	46
114	Ultrasensitive Nucleic Acid Assay Based on AIE-Active Polymer Dots with Excellent Electrochemiluminescence Stability. Analytical Chemistry, 2021, 93, 6857-6864.	3.2	46
115	More Symmetrical "Hot Spots―Ensure Stronger Plasmon-Enhanced Fluorescence: From Au Nanorods to Nanostars. Analytical Chemistry, 2021, 93, 2480-2489.	3.2	46
116	Antifouling Electrochemical Biosensor Based on the Designed Functional Peptide and the Electrodeposited Conducting Polymer for CTC Analysis in Human Blood. Analytical Chemistry, 2022, 94, 2204-2211.	3.2	46
117	Ultrasensitive protein detection using an aptamer-functionalized single polyaniline nanowire. Chemical Communications, 2011, 47, 6368.	2.2	45
118	Rapid real-time electrical detection of proteins using single conducting polymer nanowire-based microfluidic aptasensor. Biosensors and Bioelectronics, 2011, 30, 306-309.	5.3	43
119	Electrochemical sensor for nitrobenzene based on carbon paste electrode modified with a poly(3,4-ethylenedioxythiophene) and carbon nanotube nanocomposite. Mikrochimica Acta, 2014, 181, 463-469.	2.5	43
120	Enhanced electropolymerization of poly(xanthurenic acid)–MoS ₂ film for specific electrocatalytic detection of guanine and adenine. Journal of Materials Chemistry B, 2015, 3, 4884-4891.	2.9	43
121	Rapid synthesis of nitrogen doped carbon dots and their application as a label free sensor array for simultaneous discrimination of multiple proteins. Journal of Materials Chemistry B, 2017, 5, 8748-8753.	2.9	43
122	Ultrasensitive dual-signal ratiometric electrochemical aptasensor for neuron-specific enolase based on Au nanoparticles@Pd nanoclusters-poly(bismarck brown Y) and dendritic AuPt nanoassemblies. Sensors and Actuators B: Chemical, 2020, 311, 127931.	4.0	43
123	Analytical aspects of fet-based biosensors. Frontiers in Bioscience - Landmark, 2005, 10, 420.	3.0	42
124	Aptamer biosensor for dopamine based on a gold electrode modified with carbon nanoparticles and thionine labeled gold nanoparticles as probe. Mikrochimica Acta, 2015, 182, 1797-1802.	2.5	42
125	AuPt nanocrystals/polydopamine supported on open-pored hollow carbon nanospheres for a dual-signaling electrochemical ratiometric immunosensor towards h-FABP detection. Sensors and Actuators B: Chemical, 2021, 346, 130501.	4.0	42
126	Aptamer biosensor for highly sensitive and selective detection of dopamine using ubiquitous personal glucose meters. Sensors and Actuators B: Chemical, 2015, 209, 596-601.	4.0	40

#	Article	IF	CITATIONS
127	Low fouling electrochemical sensing in complex biological media by using the ionic liquid-doped conducting polymer PEDOT: application to voltammetric determination of dopamine. Mikrochimica Acta, 2019, 186, 220.	2.5	40
128	In situ electropolymerised silica–polyaniline core–shell structures: Electrode modification and enzyme biosensor enhancement. Electrochimica Acta, 2007, 52, 1865-1870.	2.6	39
129	Highly selective ratiometric electrogenerated chemiluminescence assay of DNA methyltransferase activity via polyaniline and anti-fouling peptide modified electrode. Biosensors and Bioelectronics, 2019, 142, 111553.	5.3	39
130	Bovine Serum Albumin-Cross-Linked Polyaniline Nanowires for Ultralow Fouling and Highly Sensitive Electrochemical Protein Quantification in Human Serum Samples. Analytical Chemistry, 2021, 93, 4326-4333.	3.2	39
131	Electrochemical preparation of distinct polyaniline nanostructures by surface charge control of polystyrene nanoparticle templates. Chemical Communications, 2007, , 3207.	2.2	38
132	A multicoloured Au NCs based cross-reactive sensor array for discrimination of multiple proteins. Journal of Materials Chemistry B, 2017, 5, 4207-4213.	2.9	38
133	Highâ€Performance Piezoâ€Electrocatalytic Sensing of Ascorbic Acid with Nanostructured Wurtzite Zinc Oxide. Advanced Materials, 2021, 33, e2105697.	11.1	38
134	Antifouling Aptasensor Based on Self-Assembled Loop-Closed Peptides with Enhanced Stability for CA125 Assay in Complex Biofluids. Analytical Chemistry, 2021, 93, 13555-13563.	3.2	37
135	Cost-effective preparation and sensing application of conducting polymer PEDOT/ionic liquid nanocomposite with excellent electrochemical properties. RSC Advances, 2015, 5, 20741-20746.	1.7	36
136	An antifouling electrochemical immunosensor for carcinoembryonic antigen based on hyaluronic acid doped conducting polymer PEDOT. RSC Advances, 2016, 6, 88411-88416.	1.7	36
137	Electrochemical biosensors for the detection of carcinoembryonic antigen with low fouling and high sensitivity based on copolymerized polydopamine and zwitterionic polymer. Sensors and Actuators B: Chemical, 2020, 319, 128253.	4.0	36
138	Photoelectrochemical dopamine sensor based on a gold electrode modified with SnSe nanosheets. Mikrochimica Acta, 2017, 184, 3333-3338.	2.5	35
139	Label-free electrochemical aptasensor for adenosine detection based on cascade signal amplification strategy. Biosensors and Bioelectronics, 2017, 90, 356-362.	5.3	35
140	Adenosine triphosphate responsive metal–organic frameworks equipped with a DNA structure lock for construction of a ratiometric SERS biosensor. Chemical Communications, 2020, 56, 1413-1416.	2.2	35
141	Antifouling sensors based on peptides for biomarker detection. TrAC - Trends in Analytical Chemistry, 2020, 127, 115903.	5.8	35
142	Ultrasensitive ratiometric electrochemical immunoassay of N-terminal pro-B-type natriuretic peptide based on three-dimensional PtCoNi hollow multi-branches/ferrocene-grafted-ionic liquid and Co N C nanosheets. Sensors and Actuators B: Chemical, 2021, 326, 128794.	4.0	35
143	A Host–Guest Interaction-Based and Metal–Organic Gel-Based Biosensor with Aggregation-Induced Electrochemiluminescence Enhancement for Methyltransferase Assay. Analytical Chemistry, 2021, 93, 2974-2981.	3.2	35
144	Dual ligand co-functionalized fluorescent gold nanoclusters for the "turn on―sensing of glutathione in tumor cells. Journal of Materials Chemistry B, 2016, 4, 1270-1275.	2.9	34

#	Article	IF	CITATIONS
145	Cobalt and nickel bimetallic sulfide nanoparticles immobilized on montmorillonite demonstrating peroxidase-like activity for H ₂ O ₂ detection. New Journal of Chemistry, 2018, 42, 18749-18758.	1.4	34
146	Separating photoanode from recognition events: toward a general strategy for a self-powered photoelectrochemical immunoassay with both high sensitivity and anti-interference capabilities. Chemical Communications, 2018, 54, 7062-7065.	2.2	34
147	One-pot enzyme- and indicator-free colorimetric sensing of glucose based on MnO2 nano-oxidizer. Sensors and Actuators B: Chemical, 2020, 304, 127304.	4.0	34
148	Preparation and electrochemical catalytic application of nanocrystalline cellulose doped poly(3,4-ethylenedioxythiophene) conducting polymer nanocomposites. RSC Advances, 2014, 4, 24328-24333.	1.7	33
149	Amperometric sensing of nitrite using a glassy carbon electrode modified with a multilayer consisting of carboxylated nanocrystalline cellulose and poly(diallyldimethyl ammonium) ions in a PEDOT host. Mikrochimica Acta, 2016, 183, 2031-2037.	2.5	33
150	A glassy carbon electrode modified with poly(3,4-ethylenedioxythiophene) doped with nano-sized hydroxyapatite for amperometric determination of nitrite. Mikrochimica Acta, 2017, 184, 1721-1727.	2.5	33
151	Aptamer based label free thrombin assay based on the use of silver nanoparticles incorporated into self-polymerized dopamine. Mikrochimica Acta, 2018, 185, 253.	2.5	33
152	Biodegradable nanoprobe based on MnO2 nanoflowers and graphene quantum dots for near infrared fluorescence imaging of glutathione in living cells. Mikrochimica Acta, 2018, 185, 485.	2.5	33
153	Nucleic acid-based ratiometric electrochemiluminescent, electrochemical and photoelectrochemical biosensors: a review. Mikrochimica Acta, 2019, 186, 405.	2.5	33
154	Scaling up an electrochemical signal with a catalytic hairpin assembly coupling nanocatalyst label for DNA detection. Chemical Communications, 2015, 51, 7100-7103.	2.2	32
155	Novel dual ligand co-functionalized fluorescent gold nanoclusters as a versatile probe for sensitive analysis of Hg2+ and oxytetracycline. Analytical and Bioanalytical Chemistry, 2016, 408, 2955-2962.	1.9	32
156	Poly(3,4-ethylenedioxythiophene) doped with engineered carbon quantum dots for enhanced amperometric detection of nitrite. Mikrochimica Acta, 2018, 185, 249.	2.5	32
157	Enzymeless voltammetric hydrogen peroxide sensor based on the use of PEDOT doped with Prussian Blue nanoparticles. Mikrochimica Acta, 2017, 184, 483-489.	2.5	31
158	Core–Shell Multifunctional Nanomaterial-Based All-in-One Nanoplatform for Simultaneous Multilayer Imaging of Dual Types of Tumor Biomarkers and Photothermal Therapy. Analytical Chemistry, 2020, 92, 15169-15178.	3.2	31
159	A label-free electrochemical immunosensor based on rhombic dodecahedral Cu3Pt nanoframes with advanced oxygen reduction performance for highly sensitive alpha-fetoprotein detection. Sensors and Actuators B: Chemical, 2019, 288, 721-727.	4.0	30
160	Water-soluble carbon dots with blue, yellow and red emissions: mechanism investigation and array-based fast sensing application. Chemical Communications, 2020, 56, 4074-4077.	2.2	30
161	An electrochemical biosensor for alpha-fetoprotein detection in human serum based on peptides containing isomer D-Amino acids with enhanced stability and antifouling property. Biosensors and Bioelectronics, 2021, 190, 113466.	5.3	30
162	Construction of ultrasensitive label-free aptasensor for thrombin detection using palladium nanocones boosted electrochemiluminescence system. Electrochimica Acta, 2019, 310, 195-202.	2.6	29

#	Article	IF	CITATIONS
163	Liquid Phase Interfacial Surface-Enhanced Raman Scattering Platform for Ratiometric Detection of MicroRNA 155. Analytical Chemistry, 2020, 92, 15573-15578.	3.2	29
164	Nanosheets-assembled hollow CdIn2S4 microspheres-based photoelectrochemical and fluorescent dual-mode aptasensor for highly sensitive assay of 17β-estradiol based on magnetic separation and enzyme catalytic amplification. Sensors and Actuators B: Chemical, 2021, 347, 130553.	4.0	29
165	Development of a Single Quantum Dot-Mediated FRET Nanosensor for Sensitive Detection of Single-Nucleotide Polymorphism in Cancer Cells. Analytical Chemistry, 2021, 93, 14568-14576.	3.2	29
166	Nanocauliflowers: A Nanostructured Polyaniline-Modified Screen-Printed Electrode with a Self-Assembled Polystyrene Template and Its Application in an Amperometric Enzyme Biosensor. Electroanalysis, 2007, 19, 876-883.	1.5	28
167	A sensitive chemiluminescence method for the determination of cysteine based on silver nanoclusters. Mikrochimica Acta, 2012, 179, 323-328.	2.5	28
168	A novel dual-functional biosensor for fluorometric detection of inorganic pyrophosphate and pyrophosphatase activity based on globulin stabilized gold nanoclusters. Analytica Chimica Acta, 2017, 958, 22-29.	2.6	28
169	Reagentless and label-free voltammetric immunosensor for carcinoembryonic antigen based on polyaniline nanowires grown on porous conducting polymer composite. Mikrochimica Acta, 2017, 184, 889-896.	2.5	28
170	Nonenzymatic Amperometric Aptamer Cytosensor for Ultrasensitive Detection of Circulating Tumor Cells and Dynamic Evaluation of Cell Surface N-Glycan Expression. ACS Omega, 2018, 3, 8595-8604.	1.6	28
171	A DNA–linker–DNA bifunctional probe for simultaneous SERS detection of miRNAs <i>via</i> symmetric signal amplification. Chemical Communications, 2018, 54, 7786-7789.	2.2	28
172	Green synthesis of Pd nanocones as a novel and effective electrochemiluminescence illuminant for highly sensitive detection of dopamine. Sensors and Actuators B: Chemical, 2019, 281, 588-594.	4.0	28
173	Enzymatic Nanolithography of Polyaniline Nanopatterns by Using Peroxidaseâ€Modified Atomic Force Microscopy Tips. Chemistry - A European Journal, 2009, 15, 5191-5194.	1.7	27
174	Nitrite Oxidation with Copper–Cobalt Nanoparticles on Carbon Nanotubes Doped Conducting Polymer PEDOT Composite. Chemistry - an Asian Journal, 2015, 10, 1892-1897.	1.7	27
175	Construction of efficient "on-off-on―fluorescence aptasensor for ultrasensitive detection of prostate specific antigen via covalent energy transfer between g-C3N4 quantum dots and palladium triangular plates. Analytica Chimica Acta, 2020, 1104, 53-59.	2.6	27
176	Facile construction of ratiometric electrochemical immunosensor using hierarchical PtCoIr nanowires and porous SiO2@Ag nanoparticles for accurate detection of septicemia biomarker. Bioelectrochemistry, 2021, 140, 107802.	2.4	27
177	From Passive Signal Output to Intelligent Response: "On-Demand―Precise Imaging Controlled by Near-Infrared Light. Analytical Chemistry, 2021, 93, 12329-12336.	3.2	27
178	Electrochemical Biosensor with Enhanced Antifouling Capability Based on Amyloid-like Bovine Serum Albumin and a Conducting Polymer for Ultrasensitive Detection of Proteins in Human Serum. Analytical Chemistry, 2021, 93, 14351-14357.	3.2	27
179	Highly Sensitive Electrochemiluminescence Detection of Mercury(II) Ions Based on DNAâ€Linked Luminolâ€Au NPs Superstructure. Electroanalysis, 2014, 26, 823-830. 	1.5	26
180	Electrochemical aptasensor based on Au@HS-rGO and thymine-Hg2+-thymine structure for sensitive detection of mercury ion. Journal of Electroanalytical Chemistry, 2019, 848, 113308.	1.9	26

#	Article	IF	CITATIONS
181	Engineering of ATP-Powered Photosensitizer for Targeted Recycling Activatable Imaging of MicroRNA and Controllable Cascade Amplification Photodynamic Therapy. Analytical Chemistry, 2019, 91, 7879-7886.	3.2	26
182	Strongly emitting and long-lived silver indium sulfide quantum dots for bioimaging: Insight into co-ligand effect on enhanced photoluminescence. Journal of Colloid and Interface Science, 2020, 565, 35-42.	5.0	26
183	Construction of a Dye-Sensitized and Gold Plasmon-Enhanced Cathodic Photoelectrochemical Biosensor for Methyltransferase Activity Assay. Analytical Chemistry, 2021, 93, 10310-10316.	3.2	26
184	An ultrasensitive biosensor for prostate specific antigen detection in complex serum based on functional signal amplifier and designed peptides with both antifouling and recognizing capabilities. Biosensors and Bioelectronics, 2022, 200, 113921.	5.3	26
185	Facile synthesis of AgPt@Ag core-shell nanoparticles as highly active surface-enhanced Raman scattering substrates. Sensors and Actuators B: Chemical, 2018, 260, 945-952.	4.0	25
186	Visible-Light Driven Photoelectrochemical Platform Based on the Cyclometalated Iridium(III) Complex with Coumarin 6 for Detection of MicroRNA. Analytical Chemistry, 2018, 90, 14239-14246.	3.2	25
187	Photoelectrochemical cell enhanced by ternary heterostructured photoanode: Toward high-performance self-powered cathodic cytosensing. Biosensors and Bioelectronics, 2019, 137, 52-57.	5.3	25
188	Peptide-Based Photocathodic Biosensors: Integrating a Recognition Peptide with an Antifouling Peptide. Analytical Chemistry, 2021, 93, 2706-2712.	3.2	25
189	Biocompatible peptide hydrogels with excellent antibacterial and catalytic properties for electrochemical sensing application. Analytica Chimica Acta, 2021, 1154, 338295.	2.6	25
190	A label-free electrochemical immnunosensor based on signal magnification of oxygen reduction reaction catalyzed by uniform PtCo nanodendrites for highly sensitive detection of carbohydrate antigen 15-3. Analytica Chimica Acta, 2021, 1176, 338750.	2.6	25
191	Antifouling peptides combined with recognizing DNA probes for ultralow fouling electrochemical detection of cancer biomarkers in human bodily fluids. Biosensors and Bioelectronics, 2022, 206, 114162.	5.3	25
192	Wearable transdermal colorimetric microneedle patch for Uric acid monitoring based on peroxidase-like polypyrrole nanoparticles. Analytica Chimica Acta, 2022, 1212, 339911.	2.6	25
193	Antifouling and conducting PEDOT derivative grafted with polyglycerol for highly sensitive electrochemical protein detection in complex biological media. Journal of Electroanalytical Chemistry, 2019, 840, 272-278.	1.9	24
194	Biocompatible off-stoichiometric copper indium sulfide quantum dots with tunable near-infrared emission <i>via</i> aqueous based synthesis. Chemical Communications, 2019, 55, 15053-15056.	2.2	24
195	Advances in Portable Visual Detection of Pathogenic Bacteria. ACS Applied Bio Materials, 2020, 3, 7291-7305.	2.3	24
196	Multicolor fluorescence encoding of different microRNAs in lung cancer tissues at the single-molecule level. Chemical Science, 2021, 12, 12407-12418.	3.7	24
197	Charge-Transfer Resonance and Surface Defect-Dominated WO ₃ Hollow Microspheres as SERS Substrates for the miRNA 155 Assay. Analytical Chemistry, 2022, 94, 6967-6975.	3.2	24
198	"Nanofingers―Based on Binary Gold–Polypyrrole Nanowires. Small, 2008, 4, 738-741.	5.2	23

#	Article	IF	CITATIONS
199	Aqueously synthesized color-tunable quaternary Cu-In-Zn-S quantum dots for Cu(II) detection via mild and rapid cation exchange. Sensors and Actuators B: Chemical, 2019, 294, 32-39.	4.0	23
200	Two-dimensional porphyrin-Co9S8 nanocomposites with synergistic peroxidase-like catalysis: Synthesis and application toward colorimetric biosensing of H2O2 and glutathione. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 568, 248-258.	2.3	23
201	The mimetic assembly of cobalt prot-porphyrin with cyclodextrin dimer and its application for H2O2 detection. Analytica Chimica Acta, 2020, 1097, 78-84.	2.6	23
202	Ratiometric Multicolor Analysis of Intracellular MicroRNA Using a Chain Hybrid Substitution-Triggered Self-Assembly of Silver Nanocluster-Based Label-Free Sensing Platform. ACS Applied Materials & Interfaces, 2020, 12, 373-379.	4.0	23
203	Electrochemical sensing interfaces based on hierarchically architectured zwitterionic peptides for ultralow fouling detection of alpha fetoprotein in serum. Analytica Chimica Acta, 2021, 1146, 17-23.	2.6	23
204	All-polymer free-standing electrodes for flexible electrochemical sensors. Sensors and Actuators B: Chemical, 2021, 334, 129675.	4.0	23
205	Bipolar Aggregation-Induced Electrochemiluminescence of Thiophene-Fused Conjugated Microporous Polymers. ACS Applied Materials & Interfaces, 2021, 13, 28782-28789.	4.0	23
206	Shell-Switchable SERS Blocking Strategy for Reliable Signal-On SERS Sensing in Living Cells: Detecting an External Target without Affecting the Internal Raman Molecule. Analytical Chemistry, 2020, 92, 11469-11475.	3.2	22
207	Ratiometric antifouling electrochemiluminescence biosensor based on bi-functional peptides and low toxic quantum dots. Sensors and Actuators B: Chemical, 2020, 322, 128613.	4.0	22
208	Ratiometric electrogenerated chemiluminescence sensor based on a designed anti-fouling peptide for the detection of carcinoembryonic antigen. Analytica Chimica Acta, 2020, 1136, 134-140.	2.6	22
209	Construction of a Structure-Switchable Toehold Dumbbell Probe for Sensitive and Label-Free Measurement of MicroRNA in Cancer Cells and Tissues. Analytical Chemistry, 2022, 94, 1882-1889.	3.2	22
210	A dopamine sensor based on a carbon paste electrode modified with DNA-doped poly(3,4-ethylenedioxythiophene). Mikrochimica Acta, 2015, 182, 679-685.	2.5	21
211	A nanocomposite consisting of MnO2 nanoflowers and the conducting polymer PEDOT for highly sensitive amperometric detection of paracetamol. Mikrochimica Acta, 2019, 186, 499.	2.5	21
212	Robust photoelectrochemical cytosensor in biological media using antifouling property of zwitterionic peptide. Sensors and Actuators B: Chemical, 2019, 299, 126996.	4.0	21
213	Threeâ€Dimensional Nanoporous Conducting Polymer Poly(3,4â€ethylenedioxythiophene) (PEDOT) Decorated with Copper Nanoparticles: Electrochemical Preparation and Enhanced Nonenzymatic Glucose Sensing. ChemElectroChem, 2016, 3, 1799-1804.	1.7	20
214	Photoelectrochemical platform for cancer cell glutathione detection based on polyaniline and nanoMoS2 composites modified gold electrode. Biosensors and Bioelectronics, 2018, 112, 93-99.	5.3	20
215	Ultrasensitive detection of microRNA-21 based on plasmon-coupling-induced electrochemiluminescence enhancement. Electrochemistry Communications, 2018, 94, 36-40.	2.3	20
216	Bioinspired one-pot fabrication of triple-layered Rh@Co@Pt-skin core-shell nanodendrites: A highly active and durable electrocatalyst towards oxygen reduction reaction. Electrochimica Acta, 2019, 321, 134660.	2.6	20

#	Article	IF	CITATIONS
217	Label-Free and Template-Free Chemiluminescent Biosensor for Sensitive Detection of 5-Hydroxymethylcytosine in Genomic DNA. Analytical Chemistry, 2021, 93, 1939-1943.	3.2	20
218	MnO2 shell-isolated SERS nanoprobe for the quantitative detection of ALP activity in trace serum: Relying on the enzyme-triggered etching of MnO2 shell to regulate the signal. Sensors and Actuators B: Chemical, 2021, 334, 129605.	4.0	20
219	A label-free electrochemical immunosensor based on encapsulated signal molecules in mesoporous silica-coated gold nanorods for ultrasensitive assay of procalcitonin. Bioelectrochemistry, 2021, 140, 107753.	2.4	20
220	Antifouling biosensors for reliable protein quantification in serum based on designed all-in-one branched peptides. Chemical Communications, 2021, 57, 777-780.	2.2	20
221	One-pot synthesis of biofunctional and near-infrared fluorescent gold nanodots and their application in Pb ²⁺ sensing and tumor cell imaging. RSC Advances, 2015, 5, 3152-3156.	1.7	19
222	Concatenated logic gates by amplified chemiluminescence of hemin/G-Quadruplex DNAzyme based on a nonlinear hybridization chain reaction. Sensors and Actuators B: Chemical, 2017, 246, 734-739.	4.0	19
223	Multi-segmented CdS–Au nanorods for electrochemiluminescence bioanalysis. Nanoscale, 2018, 10, 19224-19230.	2.8	19
224	Zinc ion-triggered aggregation induced emission enhancement of dual ligand co-functionalized gold nanoclusters based novel fluorescent nanoswitch for multi-component detection. Analytica Chimica Acta, 2019, 1079, 192-199.	2.6	19
225	A coumarin-appended cyclometalated iridium(III) complex for visible light driven photoelectrochemical bioanalysis. Biosensors and Bioelectronics, 2020, 147, 111779.	5.3	19
226	One-step electrodeposition of poly(m-aminobenzoic acid) membrane decorated with peptide for antifouling biosensing of Immunoglobulin E. Colloids and Surfaces B: Biointerfaces, 2020, 186, 110706.	2.5	19
227	<i>In situ</i> sulfidation for controllable hetero-interface engineering of α-Ni(OH) ₂ –Ni ₃ S ₄ hybrid structures realizing robust electrocatalytic methanol oxidation. Chemical Communications, 2020, 56, 5283-5286.	2.2	19
228	All-polymer ultrathin flexible supercapacitors for electronic skin. Chemical Engineering Journal, 2021, 405, 126915.	6.6	19
229	Preparation and electrochemical sensing application of porous conducting polymers. TrAC - Trends in Analytical Chemistry, 2021, 135, 116155.	5.8	19
230	Eco-friendly one-pot aqueous synthesis of ultra-thin AuPdCu alloyed nanowire-like networks for highly sensitive immunoassay of creatine kinase-MB. Sensors and Actuators B: Chemical, 2021, 333, 129573.	4.0	19
231	An antifouling electrochemical biosensor based on a protein imprinted hydrogel for human immunoglobulin G recognition in complex biological media. Sensors and Actuators B: Chemical, 2021, 337, 129820.	4.0	19
232	Optically Programmable Plasmon Enhanced Fluorescence-Catalytic Hairpin Assembly Signal Amplification Strategy for Spatiotemporally Precise Imaging. Analytical Chemistry, 2022, 94, 5399-5405.	3.2	19
233	A lab-on-a-carbon nanodot sensor array for simultaneous pattern recognition of multiple antibiotics. Sensors and Actuators B: Chemical, 2019, 296, 126694.	4.0	18
234	A fast and ultrasensitive detection of zinc ions based on "signal on―mode of electrochemiluminescence from single oxygen generated by porphyrin grafted onto palladium nanocubes. Sensors and Actuators B: Chemical, 2019, 290, 203-209.	4.0	18

#	Article	IF	CITATIONS
235	Combining evident photocurrent of photoanode with signal amplification of biocathode: toward a sensitivity and specificity enhanced photoelectrochemical immunosensor. Sensors and Actuators B: Chemical, 2019, 283, 705-713.	4.0	18
236	Enhanced peroxidaseâ€like activity of MMTâ€supported cuprous oxide nanocomposites toward rapid colorimetric estimation of H ₂ O ₂ . Applied Organometallic Chemistry, 2019, 33, e4716.	1.7	18
237	Controllable synthesis of 3D nitrogen-doped carbon networks supported Sn P nanoparticles as high performance anode for lithium ion batteries. Applied Surface Science, 2019, 484, 899-905.	3.1	17
238	A flexible and highly sensitive nitrite sensor enabled by interconnected 3D porous polyaniline/carbon nanotube conductive hydrogels. Analytical Methods, 2020, 12, 604-610.	1.3	17
239	Functionalized Germanene-Based Nanomaterials for the Detection of Single Nucleotide Polymorphism. ACS Applied Nano Materials, 2021, 4, 5164-5175.	2.4	17
240	Self-powered anti-interference photoelectrochemical immunosensor based on Au/ZIS/CIS heterojunction photocathode with zwitterionic peptide anchoring. Chinese Chemical Letters, 2022, 33, 4750-4755.	4.8	17
241	Peptide-based biosensor for the prostate-specific antigen using magnetic particle-bound invertase and a personal glucose meter for readout. Mikrochimica Acta, 2015, 182, 1669-1675.	2.5	16
242	A bioresponsive controlled-release bioassay based on aptamer-gated Au nanocages and its application in living cells. Chemical Communications, 2015, 51, 9109-9112.	2.2	16
243	Aggregation-induced emission based one-step "lighting up―sensor array for rapid protein identification. Chemical Communications, 2020, 56, 13828-13831.	2.2	16
244	Free-standing electrochemical biosensor for carcinoembryonic antigen detection based on highly stable and flexible conducting polypyrrole nanocomposite. Mikrochimica Acta, 2021, 188, 217.	2.5	16
245	A novel SERS substrate with high reusability for sensitive detection of miRNA 21. Talanta, 2021, 228, 122240.	2.9	16
246	Functional DNA-peptide conjugates with enhanced antifouling capabilities for electrochemical detection of proteins in complex human serum. Sensors and Actuators B: Chemical, 2022, 367, 132110.	4.0	16
247	Semiconductor Nanocrystals Emitting in the Second Nearâ€Infrared Window: Optical Properties and Application in Biomedical Imaging. Advanced Optical Materials, 2022, 10, .	3.6	16
248	Toehold-aided DNA recycling amplification using hemin and G-quadruplex reporter DNA on magnetic beads as tags for chemiluminescent determination of riboflavin. Mikrochimica Acta, 2016, 183, 2965-2971.	2.5	15
249	Hyaluronic acid functionalized nanostructured sensing interface for voltammetric determination of microRNA in biological media with ultra-high sensitivity and ultra-low fouling. Mikrochimica Acta, 2018, 185, 156.	2.5	15
250	Target-induced formation of multiple DNAzymes in solid-state nanochannels: Toward innovative photoelectrochemical probing of telomerase activity. Biosensors and Bioelectronics, 2019, 142, 111564.	5.3	15
251	Novel cathodic photoelectrochemical immnuosensor with high sensitivity based on 3D AuNPs/ZnO/Cu2O heterojunction nanowires. Electrochimica Acta, 2019, 318, 100-107.	2.6	15
252	5-Hydroxymethylcytosine Glucosylation-Triggered Helicase-Dependent Amplification-Based Fluorescent Biosensor for Sensitive Detection of β-Glucosyltransferase with Zero Background Signal. Analytical Chemistry, 2020, 92, 16307-16313.	3.2	15

#	Article	IF	CITATIONS
253	Catalytic single-molecule Förster resonance energy transfer biosensor for uracil-DNA glycosylase detection and cellular imaging. Biosensors and Bioelectronics, 2022, 213, 114447.	5.3	15
254	Ultrasensitive and accelerated detection of ciguatoxin by capillary electrophoresis via on-line sandwich immunoassay with rotating magnetic field and nanoparticles signal enhancement. Analytica Chimica Acta, 2015, 888, 27-35.	2.6	14
255	Electrochemical preparation of thin-layered molybdenum disulfide-poly(m-aminobenzenesulfonic acid) nanocomposite for TNT detection. Journal of Electroanalytical Chemistry, 2016, 781, 70-75.	1.9	14
256	The Yin and Yang of coordinating co-solvents in the size-tuning of Fe ₃ O ₄ nanocrystals through flow synthesis. Nanoscale, 2017, 9, 18609-18612.	2.8	14
257	A DNA Nanotube–Peptide Biocomplex for mRNA Detection and Its Application in Cancer Diagnosis and Targeted Therapy. Chemistry - A European Journal, 2018, 24, 10171-10177.	1.7	14
258	An ultrasensitive biosensor based on three-dimensional nanoporous conducting polymer decorated with gold nanoparticles for microRNA detection. Microchemical Journal, 2021, 161, 105780.	2.3	14
259	<scp>d</scp> -Amino Acid-Based Antifouling Peptides for the Construction of Electrochemical Biosensors Capable of Assaying Proteins in Serum with Enhanced Stability. ACS Sensors, 2022, 7, 1740-1746.	4.0	14
260	Mismatched catalytic hairpin assembly coupling hydroxylamine-O-sulfonic acid as oxide for DNA assay. Sensors and Actuators B: Chemical, 2018, 254, 347-353.	4.0	13
261	Synthesis of amphiphilic graphitic silver nanoparticles with inherent internal standards: an efficient strategy for reliable quantitative SERS analysis in common fluids. Chemical Communications, 2018, 54, 8618-8621.	2.2	13
262	Intracellular fluorometric determination of microRNA-21 by using a switch-on nanoprobe composed of carbon nanotubes and gold nanoclusters. Mikrochimica Acta, 2019, 186, 447.	2.5	13
263	Photoliquefiable DNA-surfactant ionic crystals: Anhydrous self-healing biomaterials at room temperature. Acta Biomaterialia, 2021, 128, 143-149.	4.1	13
264	Dual Recognition DNA Triangular Prism Nanoprobe: Toward the Relationship between K ⁺ and pH in Lysosomes. Analytical Chemistry, 2021, 93, 14892-14899.	3.2	13
265	A distance-triggered signaling on–off mechanism by plasmonic Au nanoparticles: toward advanced photocathodic DNA bioanalysis. Chemical Communications, 2020, 56, 1345-1348.	2.2	12
266	Click reaction-assisted construction of antifouling immunosensors for electrochemical detection of cancer biomarkers in human serum. Sensors and Actuators B: Chemical, 2022, 363, 131810.	4.0	12
267	Isothermal amplified detection of ATP using Au nanocages capped with a DNA molecular gate and its application in cell lysates. Analyst, The, 2015, 140, 1672-1677.	1.7	11
268	An ultra-sensitive fluorescent "Turn On―biosensor for glutathione and its application in living cells. Analytica Chimica Acta, 2018, 998, 45-51.	2.6	11
269	Low fouling and ultrasensitive electrochemical immunosensors with dual assay methods based on Fe3O4 magnetic nanoparticles. Journal of Materials Chemistry B, 2019, 7, 5842-5847.	2.9	11
270	Partial sulfidation for constructing Cu ₂ O–CuS heterostructures realizing enhanced electrochemical glucose sensing. New Journal of Chemistry, 2021, 45, 7204-7209.	1.4	11

#	Article	IF	CITATIONS
271	A novel ratiometric electrochemical cupric ion sensing strategy based on unmodified electrode. Analytica Chimica Acta, 2021, 1146, 11-16.	2.6	11
272	Dual-Mode Scattering Nanoprobes for Imaging Hydrogen Sulfide in Living Cells. ACS Applied Nano Materials, 2021, 4, 7319-7329.	2.4	11
273	Multifunctional nano-biosensor based on metal-organic framework for enhanced fluorescence imaging of intracellular miRNA-122 and synergistic chemo-photothermal therapy of tumor cells. Analytica Chimica Acta, 2021, 1176, 338779.	2.6	11
274	Perylene diimideâ€modified magnetic γâ€Fe ₂ O ₃ /CeO ₂ nanoparticles as peroxidase mimics for highly sensitive colorimetric detection of Vitamin C. Applied Organometallic Chemistry, 2019, 33, e4884.	1.7	10
275	Platinum-based nanocomposite as oxygen reduction catalyst for efficient signal amplification: Toward building of high-performance photocathodic immunoassay. Biosensors and Bioelectronics, 2020, 168, 112563.	5.3	10
276	Ligand-modulated aqueous synthesis of color-tunable copper nanoclusters for the photoluminescent assay of Hg(II). Mikrochimica Acta, 2020, 187, 545.	2.5	10
277	A AuNP-capped cage fluorescent biosensor based on controlled-release and cyclic enzymatic amplification for ultrasensitive detection of ATP. Journal of Materials Chemistry B, 2020, 8, 5945-5951.	2.9	10
278	A durable antifouling protein molecularly imprinted gel interface for human serum albumin detection and antibacterial application. Chemical Engineering Journal, 2021, 421, 129752.	6.6	10
279	Ultrasensitive iodide detection based on the resonance light scattering of histidine-stabilized gold nanoclusters. Mikrochimica Acta, 2014, 181, 1379-1384.	2.5	9
280	Facile synthesis of porous dendritic Pt68Ag32 nanodandelions for greatly boosting electrocatalytic activity towards oxygen reduction and hydrogen evolution. International Journal of Hydrogen Energy, 2018, 43, 6096-6106.	3.8	9
281	Photoelectrochemical endocrine-disrupting chemicals aptasenor based on resonance energy transfer between SnSe/GR and AuNPs along with GSSG for signal amplification. Sensors and Actuators B: Chemical, 2018, 260, 388-395.	4.0	9
282	Rapid pattern recognition of different types of sulphur-containing species as well as serum and bacteria discrimination using Au NCs-Cu2+ complexes. Chinese Chemical Letters, 2020, 31, 2473-2477.	4.8	9
283	Photoregulative phase change biomaterials showing thermodynamic and mchanical stabilities. Nanoscale, 2022, 14, 976-983.	2.8	9
284	Covalent Amide-Bonded Nanoflares for High-Fidelity Intracellular Sensing and Targeted Therapy: A Superstable Nanosystem Free of Nonspecific Interferences. Analytical Chemistry, 2021, 93, 7879-7888.	3.2	8
285	Photoswitchable solvent-free DNA thermotropic liquid crystals toward self-erasable shape information recording biomaterials. Materials Today Bio, 2021, 12, 100140.	2.6	8
286	Powerful tailoring effects of counterions of ammonium surfactants on the phase transitions of solvent-free DNA thermotropic liquid crystals. Journal of Molecular Liquids, 2021, 337, 116480.	2.3	8
287	Wearable transdermal microneedle patch based on photonic crystal hydrogel for glucose monitoring. Chinese Journal of Analytical Chemistry, 2022, 50, 100054.	0.9	8
288	Target-triggered configuration change of DNA tetrahedron for SERS assay of microRNA 122. Mikrochimica Acta, 2020, 187, 460.	2.5	7

#	Article	IF	CITATIONS
289	Impact of double-chain surfactant stabilizer on the free active surface sites of gold nanoparticles. Molecular Catalysis, 2021, 501, 111377.	1.0	7
290	Efficient cathodic aptasensor coupling photoelectrochemical enhancement of PEDOT/Bi2S3/ZnO photoanode with signal amplification of Pt nanocatalysts. Sensors and Actuators B: Chemical, 2021, 345, 130365.	4.0	7
291	Rapid large-scale synthesis of ultrathin NiFe-layered double hydroxide nanosheets with tunable structures as robust oxygen evolution electrocatalysts. RSC Advances, 2021, 11, 37624-37630.	1.7	7
292	A two-wavelength fluorescence recovery method for the simultaneous determination of aureomycin and oxytetracycline by using gold nanocrystals modified with serine and 11-mercaptoundecanoic acid. Mikrochimica Acta, 2018, 185, 222.	2.5	6
293	Visible Light Responsive DNA Thermotropic Liquid Crystals Based on a Photothermal Effect of Gold Nanoparticles. Journal of Analysis and Testing, 2021, 5, 181-187.	2.5	6
294	A DNAzyme-based normalized fluorescence strategy for direct quantification of endogenous zinc in living cells. Chemical Communications, 2022, 58, 577-580.	2.2	6
295	A Cell-Anchored and Self-Calibrated DNA Nanoplatform for in Situ Imaging and Quantification of Endogenous MicroRNA in Live Cells: Introducing Two Controls to Normalize the Sensing Signals. CCS Chemistry, 2023, 5, 176-190.	4.6	6
296	Low-Fouling Magnetic Nanoparticles and Evaluation of Their Potential Application as Disease Markers Assay in Whole Serum. ACS Applied Nano Materials, 2018, 1, 2489-2495.	2.4	5
297	Introduction of an antifouling photoelectrode: an effective strategy for a high-performance photoelectrochemical cytosensor. Journal of Materials Chemistry B, 2020, 8, 4836-4840.	2.9	5
298	Bilirubin oxidase labeling triggers an efficient signaling mechanism of oxygen reduction reaction for smart photocathodic immunoassay. Sensors and Actuators B: Chemical, 2021, 330, 129331.	4.0	5
299	Near-infrared emitting Cu–In–Se/ZnS core/shell quantum dots: aqueous synthesis and sulfur source effects. Chemical Communications, 2021, 57, 4178-4181.	2.2	5
300	Shadow masking for nanomaterial-based biosensors incorporated with a microfluidic device. Biomedical Microdevices, 2013, 15, 531-537.	1.4	3
301	Aqueous synthesis of bright near-infrared-emitting Zn-Cu-In-Se quantum dots for multiplexed detection of tumor markers. Nano Research, 2022, 15, 8351-8359.	5.8	3
302	Advances in Detection of Epigenetic Modification—5-Hydroxymethylcytosine. Acta Chimica Sinica, 2021, 79, 614.	0.5	2
303	Designed multifunctional peptides with two recognizing branches specific for one target to achieve highly sensitive and low fouling electrochemical protein assay in human serum. Analytica Chimica Acta, 2022, 1208, 339841.	2.6	2
304	Controlledâ€Releaseâ€Based Ultrasensitive and Highly Selective Turnâ€On Fluorescent Mercury Biosensor. ChemistrySelect, 2017, 2, 11880-11885.	0.7	1
305	Cancer Nanomedicine. Journal of Nanomaterials, 2013, 2013, 1-2.	1.5	0
306	Response of dorsal root ganglion tissue to chronically stimulated electrodes. FASEB Journal, 2012, 26, 656.10.	0.2	0