List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5146016/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Complexity of Coupled Human and Natural Systems. Science, 2007, 317, 1513-1516.	12.6	2,705
2	Reduced carbon emission estimates from fossil fuel combustion and cement production in China. Nature, 2015, 524, 335-338.	27.8	1,185
3	Improvements in ecosystem services from investments in natural capital. Science, 2016, 352, 1455-1459.	12.6	1,117
4	Ecological and socioeconomic effects of China's policies for ecosystem services. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9477-9482.	7.1	1,080
5	Spatial and temporal patterns of China's cropland during 1990–2000: An analysis based on Landsat TM data. Remote Sensing of Environment, 2005, 98, 442-456.	11.0	918
6	International principles and standards for the practice of ecological restoration. Second edition. Restoration Ecology, 2019, 27, S1.	2.9	667
7	Water scarcity assessments in the past, present, and future. Earth's Future, 2017, 5, 545-559.	6.3	545
8	Twenty-three unsolved problems in hydrology (UPH) – a community perspective. Hydrological Sciences Journal, 2019, 64, 1141-1158.	2.6	474
9	A high-resolution assessment on global nitrogen flows in cropland. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 8035-8040.	7.1	470
10	PEATMAP: Refining estimates of global peatland distribution based on a meta-analysis. Catena, 2018, 160, 134-140.	5.0	421
11	Water Sustainability for China and Beyond. Science, 2012, 337, 649-650.	12.6	404
12	Physical and virtual water transfers for regional water stress alleviation in China. Proceedings of the United States of America, 2015, 112, 1031-1035.	7.1	392
13	Global terrestrial water storage and drought severity under climate change. Nature Climate Change, 2021, 11, 226-233.	18.8	345
14	GEPIC – modelling wheat yield and crop water productivity with high resolution on a global scale. Agricultural Systems, 2007, 94, 478-493.	6.1	341
15	Water conservancy projects in China: Achievements, challenges and way forward. Global Environmental Change, 2013, 23, 633-643.	7.8	305
16	Water scarcity hotspots travel downstream due to human interventions in the 20th and 21st century. Nature Communications, 2017, 8, 15697.	12.8	287
17	A reversal in global terrestrial stilling and its implications for wind energy production. Nature Climate Change, 2019, 9, 979-985.	18.8	246
18	Physical water scarcity metrics for monitoring progress towards SDG target 6.4: An evaluation of indicator 6.4.2 "Level of water stressâ€. Science of the Total Environment, 2018, 613-614, 218-232.	8.0	223

#	Article	IF	CITATIONS
19	Spatially explicit assessment of global consumptive water uses in cropland: Green and blue water. Journal of Hydrology, 2010, 384, 187-197.	5.4	220
20	Globally observed trends in mean and extreme river flow attributed to climate change. Science, 2021, 371, 1159-1162.	12.6	213
21	Global consumptive water use for crop production: The importance of green water and virtual water. Water Resources Research, 2009, 45, .	4.2	203
22	Global urban expansion offsets climate-driven increases in terrestrial net primary productivity. Nature Communications, 2019, 10, 5558.	12.8	198
23	A spatially explicit assessment of current and future hotspots of hunger in Sub-Saharan Africa in the context of global change. Global and Planetary Change, 2008, 64, 222-235.	3.5	188
24	A simple approach to assess water scarcity integrating water quantity and quality. Ecological Indicators, 2013, 34, 441-449.	6.3	188
25	Food Losses and Waste in China and Their Implication for Water and Land. Environmental Science & Technology, 2013, 47, 10137-10144.	10.0	187
26	Assessing water scarcity by simultaneously considering environmental flow requirements, water quantity, and water quality. Ecological Indicators, 2016, 60, 434-441.	6.3	182
27	Assessing water footprint at river basin level: a case study for the Heihe River Basin in northwest China. Hydrology and Earth System Sciences, 2012, 16, 2771-2781.	4.9	179
28	Food consumption patterns and their effect on water requirement in China. Hydrology and Earth System Sciences, 2008, 12, 887-898.	4.9	176
29	Human–water interface in hydrological modelling: current status and future directions. Hydrology and Earth System Sciences, 2017, 21, 4169-4193.	4.9	171
30	Land and water requirements of biofuel and implications for food supply and the environment in China. Energy Policy, 2009, 37, 1876-1885.	8.8	167
31	Assessing the land resource–food price nexus of the Sustainable Development Goals. Science Advances, 2016, 2, e1501499.	10.3	162
32	Challenges in operationalizing the water–energy–food nexus. Hydrological Sciences Journal, 2017, 62, 1714-1720.	2.6	159
33	Keeping global warming within 1.5 ŰC constrains emergence of aridification. Nature Climate Change, 2018, 8, 70-74.	18.8	158
34	Global mapping reveals increase in lacustrine algal blooms over the past decade. Nature Geoscience, 2022, 15, 130-134.	12.9	158
35	Deceleration of China's human water use and its key drivers. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7702-7711.	7.1	155
36	A GIS-based tool for modelling large-scale crop-water relations. Environmental Modelling and Software, 2009, 24, 411-422.	4.5	148

#	Article	IF	CITATIONS
37	Exposure to ambient black carbon derived from a unique inventory and high-resolution model. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 2459-2463.	7.1	148
38	China's food loss and waste embodies increasing environmental impacts. Nature Food, 2021, 2, 519-528.	14.0	142
39	Regional assessment of environmental vulnerability in the Tibetan Plateau: Development and application of a new method. Journal of Arid Environments, 2008, 72, 1929-1939.	2.4	140
40	Modeling the role of irrigation in winter wheat yield, crop water productivity, and production in China. Irrigation Science, 2007, 26, 21-33.	2.8	133
41	Assessment of spatial and temporal patterns of green and blue water flows under natural conditions in inland river basins in Northwest China. Hydrology and Earth System Sciences, 2012, 16, 2859-2870.	4.9	130
42	Manage water in a green way. Science, 2015, 349, 584-585.	12.6	130
43	Spatiotemporal analysis of precipitation variability in annual, seasonal and extreme values over upper Indus River basin. Atmospheric Research, 2018, 213, 346-360.	4.1	113
44	Global and regional phosphorus budgets in agricultural systems and their implications for phosphorus-use efficiency. Earth System Science Data, 2018, 10, 1-18.	9.9	106
45	The development of China's Yangtze River Economic Belt: how to make it in a green way?. Science Bulletin, 2017, 62, 648-651.	9.0	105
46	A comparison of changes in river runoff from multiple global and catchment-scale hydrological models under global warming scenarios of 1°C, 2°C and 3°C. Climatic Change, 2017, 141, 577-595.	3.6	104
47	Nutrient discharge from China's aquaculture industry and associated environmental impacts. Environmental Research Letters, 2015, 10, 045002.	5.2	97
48	Burden shifting of water quantity and quality stress from megacity <scp>S</scp> hanghai. Water Resources Research, 2016, 52, 6916-6927.	4.2	92
49	Explaining virtual water trade: A spatial-temporal analysis of the comparative advantage of land, labor and water in China. Water Research, 2019, 153, 304-314.	11.3	89
50	Cropland for sub-Saharan Africa: A synergistic approach using five land cover data sets. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	87
51	Water footprint of Jing-Jin-Ji urban agglomeration in China. Journal of Cleaner Production, 2017, 167, 919-928.	9.3	87
52	Forecast of water demand in Weinan City in China using WDF-ANN model. Physics and Chemistry of the Earth, 2003, 28, 219-224.	2.9	86
53	Research on the peak of CO2 emissions in the developing world: Current progress and future prospect. Applied Energy, 2019, 235, 186-203.	10.1	86
54	Worldwide evaluation of mean and extreme runoff from six global-scale hydrological models that account for human impacts. Environmental Research Letters, 2018, 13, 065015.	5.2	85

#	Article	IF	CITATIONS
55	Modelling methane emissions from natural wetlands by development and application of the TRIPLEX-GHG model. Geoscientific Model Development, 2014, 7, 981-999.	3.6	84
56	A Global and Spatially Explicit Assessment of Climate Change Impacts on Crop Production and Consumptive Water Use. PLoS ONE, 2013, 8, e57750.	2.5	83
57	China's coal-fired power plants impose pressure on water resources. Journal of Cleaner Production, 2017, 161, 1171-1179.	9.3	82
58	Historical Trends in China's Virtual Water Trade. Water International, 2007, 32, 78-90.	1.0	80
59	Adaptation to Climate Change: A Comparative Analysis of Modeling Methods for Heat-Related Mortality. Environmental Health Perspectives, 2017, 125, 087008.	6.0	80
60	China's move to higher-meat diet hits water security. Nature, 2008, 454, 397-397.	27.8	77
61	Evaluation and improvement of the MODIS land surface temperature/emissivity products using groundâ€based measurements at a semiâ€desert site on the western Tibetan Plateau. International Journal of Remote Sensing, 2007, 28, 2549-2565.	2.9	73
62	Impacts of Land-Use and Land-Cover Changes on Water Yield: A Case Study in Jing-Jin-Ji, China. Sustainability, 2018, 10, 960.	3.2	73
63	Trend analysis for the flows of green and blue water in the Heihe River basin, northwestern China. Journal of Hydrology, 2013, 502, 27-36.	5.4	72
64	China's rising hydropower demand challenges water sector. Scientific Reports, 2015, 5, 11446.	3.3	72
65	Water as an urban heat sink: Blue infrastructure alleviates urban heat island effect in mega-city agglomeration. Journal of Cleaner Production, 2020, 262, 121411.	9.3	71
66	Integrated assessments of payments for ecosystem services programs. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16297-16298.	7.1	68
67	Technical and economic analysis of amine-based carbon capture and sequestration at coal-fired power plants. Journal of Cleaner Production, 2019, 222, 476-487.	9.3	63
68	Anthropogenic transformation of Yangtze Plain freshwater lakes: patterns, drivers and impacts. Remote Sensing of Environment, 2020, 248, 111998.	11.0	63
69	Natureâ€based solutions for urban pluvial flood risk management. Wiley Interdisciplinary Reviews: Water, 2020, 7, e1421.	6.5	63
70	Savings and losses of global water resources in foodâ€related virtual water trade. Wiley Interdisciplinary Reviews: Water, 2019, 6, e1320.	6.5	62
71	Exploring Future Food Provision Scenarios for China. Environmental Science & Technology, 2019, 53, 1385-1393.	10.0	62
72	Multi-Spectral Water Index (MuWI): A Native 10-m Multi-Spectral Water Index for Accurate Water Mapping on Sentinel-2. Remote Sensing, 2018, 10, 1643.	4.0	57

#	Article	IF	CITATIONS
73	Using MODAWEC to generate daily weather data for the EPIC model. Environmental Modelling and Software, 2009, 24, 655-664.	4.5	53
74	Panta Rhei 2013–2015: global perspectives on hydrology, society and change. Hydrological Sciences Journal, 0, , 1-18.	2.6	53
75	Assessing China's "developing a water-saving society―policy at a river basin level: A structural decomposition analysis approach. Journal of Cleaner Production, 2018, 190, 799-808.	9.3	53
76	Peak of CO2 emissions in various sectors and provinces of China: Recent progress and avenues for further research. Renewable and Sustainable Energy Reviews, 2019, 112, 813-833.	16.4	53
77	Urban pluvial flooding prediction by machine learning approaches – a case study of Shenzhen city, China. Advances in Water Resources, 2020, 145, 103719.	3.8	53
78	Ten-year variability in ecosystem water use efficiency in an oak-dominated temperate forest under a warming climate. Agricultural and Forest Meteorology, 2016, 218-219, 209-217.	4.8	52
79	Global assessment of nitrogen losses and trade-offs with yields from major crop cultivations. Science of the Total Environment, 2016, 572, 526-537.	8.0	49
80	Evolution of the field of ecological restoration over the last three decades: a bibliometric analysis. Restoration Ecology, 2019, 27, 647-660.	2.9	48
81	A Review of Water Stress and Water Footprint Accounting. Water (Switzerland), 2021, 13, 201.	2.7	48
82	Spatial distribution of soil organic carbon in the Zoige alpine wetland, northeastern Qinghai–Tibet Plateau. Catena, 2016, 144, 102-108.	5.0	47
83	Socioeconomic drivers of provincial-level changes in the blue and green water footprints in China. Resources, Conservation and Recycling, 2021, 175, 105834.	10.8	47
84	Reducing human nitrogen use for food production. Scientific Reports, 2016, 6, 30104.	3.3	46
85	Hotspots of peatland-derived potable water use identified by global analysis. Nature Sustainability, 2018, 1, 246-253.	23.7	46
86	Future increases in irrigation water requirement challenge the water-food nexus in the northeast farming region of China. Agricultural Water Management, 2019, 213, 594-604.	5.6	46
87	Exploring consumption-based planetary boundary indicators: An absolute water footprinting assessment of Chinese provinces and cities. Water Research, 2020, 184, 116163.	11.3	45
88	A new approach to assessing the water footprint of hydroelectric power based on allocation of water footprints among reservoir ecosystem services. Physics and Chemistry of the Earth, 2015, 79-82, 40-46.	2.9	44
89	Linking fish tolerance to water quality criteria for the assessment of environmental flows: A practical method for streamflow regulation and pollution control. Water Research, 2018, 141, 96-108.	11.3	44
90	Quantifying economic-social-environmental trade-offs and synergies of water-supply constraints: An application to the capital region of China. Water Research, 2021, 195, 116986.	11.3	44

#	Article	IF	CITATIONS
91	Effects of ecological and conventional agricultural intensification practices on maize yields in sub-Saharan Africa under potential climate change. Environmental Research Letters, 2014, 9, 044004.	5.2	43
92	Integrated water resources management and modeling: A case study of Bow river basin, Canada. Journal of Cleaner Production, 2019, 240, 118242.	9.3	41
93	China's progress towards sustainable land degradation control: Insights from the northwest arid regions. Ecological Engineering, 2019, 127, 75-87.	3.6	41
94	Research on quantitative assessment of climate change risk at an urban scale: Review of recent progress and outlook of future direction. Renewable and Sustainable Energy Reviews, 2021, 135, 110415.	16.4	41
95	Understanding each other's models: an introduction and a standard representation of 16 global water models to support intercomparison, improvement, and communication. Geoscientific Model Development, 2021, 14, 3843-3878.	3.6	41
96	Evapotranspiration simulations in ISIMIP2a—Evaluation of spatio-temporal characteristics with a comprehensive ensemble of independent datasets. Environmental Research Letters, 2018, 13, 075001.	5.2	38
97	China Fights Against Statistical Corruption. Science, 2009, 325, 675-676.	12.6	37
98	Changes in soil organic carbon stocks of wetlands on China's Zoige plateau from 1980 to 2010. Ecological Modelling, 2016, 327, 18-28.	2.5	37
99	Evaluations and Improvements of GLDAS2.0 and GLDAS2.1 Forcing Data's Applicability for Basin Scale Hydrological Simulations in the Tibetan Plateau. Journal of Geophysical Research D: Atmospheres, 2018, 123, 13,128.	3.3	36
100	Concerns about phytoplankton bloom trends in global lakes. Nature, 2021, 590, E35-E47.	27.8	36
101	Towards threshold-based management of freshwater ecosystems in the context of climate change. Ecological Modelling, 2015, 318, 265-274.	2.5	35
102	Quantifying Uncertainties in Extreme Flood Predictions under Climate Change for a Medium-Sized Basin in Northeastern China. Journal of Hydrometeorology, 2016, 17, 3099-3112.	1.9	35
103	On knowledge generation and use for sustainability. Nature Sustainability, 2019, 2, 80-82.	23.7	35
104	Comprehensive comparison of artificial neural networks and long short-term memory networks for rainfall-runoff simulation. Physics and Chemistry of the Earth, 2021, 123, 103026.	2.9	35
105	Suitable and optimal locations for implementing photovoltaic water pumping systems for grassland irrigation in China. Applied Energy, 2017, 185, 1879-1889.	10.1	34
106	Recent evolution of China's virtual water trade: analysis of selected crops and considerations for policy. Hydrology and Earth System Sciences, 2014, 18, 1349-1357.	4.9	33
107	Water resources conservation and nitrogen pollution reduction under global food trade and agricultural intensification. Science of the Total Environment, 2018, 633, 1591-1601.	8.0	33
108	Understanding the impacts of climate change and socio-economic development through food-energy-water nexus: A case study of mekong river delta. Resources, Conservation and Recycling, 2021, 167, 105390.	10.8	31

#	Article	IF	CITATIONS
109	Time to break the silence around virtual-water imports. Nature, 2008, 453, 587-587.	27.8	30
110	Quantifying Water Scarcity in Northern China Within the Context of Climatic and Societal Changes and Southâ€ŧoâ€North Water Diversion. Earth's Future, 2020, 8, e2020EF001492.	6.3	30
111	Snow as an Important Natural Reservoir for Runoff and Soil Moisture in Northeast China. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033086.	3.3	29
112	Searching for "Win-Win―solutions for food-water-GHG emissions tradeoffs across irrigation regimes of paddy rice in China. Resources, Conservation and Recycling, 2021, 166, 105360.	10.8	29
113	Two-Tier Synergic Governance of Greenhouse Gas Emissions and Air Pollution in China's Megacity, Shenzhen: Impact Evaluation and Policy Implication. Environmental Science & Technology, 2021, 55, 7225-7236.	10.0	29
114	Clobal water security: A shining star in the dark sky of achieving the sustainable development goals. , 2022, 1, 100005.		29
115	Influential Climate Teleconnections for Spatiotemporal Precipitation Variability in the Lancangâ€Mekong River Basin From 1952 to 2015. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD033331.	3.3	28
116	The potential contribution of growing rapeseed in winter fallow fields across Yangtze River Basin to energy and food security in China. Resources, Conservation and Recycling, 2021, 164, 105159.	10.8	28
117	A linear bi-level multi-objective program for optimal allocation of water resources. PLoS ONE, 2018, 13, e0192294.	2.5	28
118	Reservoir Operation Incorporating Hedging Rules and Operational Inflow Forecasts. Water Resources Management, 2013, 27, 1427-1438.	3.9	27
119	A Spatially Explicit Assessment of Growing Water Stress in China From the Past to the Future. Earth's Future, 2019, 7, 1027-1043.	6.3	27
120	Quantifying global agricultural water appropriation with data derived from earth observations. Journal of Cleaner Production, 2022, 358, 131891.	9.3	27
121	Climate Change Would Increase the Water Intensity of Irrigated Corn Ethanol. Environmental Science & Technology, 2013, 47, 6030-6037.	10.0	26
122	Impacts of climate change on virtual water content of crops in China. Ecological Informatics, 2014, 19, 26-34.	5.2	26
123	Linking physical water consumption with virtual water consumption: Methodology, application and implications. Journal of Cleaner Production, 2019, 228, 1206-1217.	9.3	26
124	Environmental Sustainability of Water Footprint in Mainland China. Geography and Sustainability, 2020, 1, 8-17.	4.3	26
125	Changes of inundation area and water turbidity of Tonle Sap Lake: responses to climate changes or upstream dam construction?. Environmental Research Letters, 2020, 15, 0940a1.	5.2	26
126	Synthesized trade-off analysis of flood control solutions under future deep uncertainty: An application to the central business district of Shanghai. Water Research, 2019, 166, 115067.	11.3	24

#	Article	IF	CITATIONS
127	Large Uncertainty on Forest Area Change in the Early 21st Century among Widely Used Global Land Cover Datasets. Remote Sensing, 2020, 12, 3502.	4.0	24
128	Bioenergy and the city – What can urban forests contribute?. Applied Energy, 2016, 165, 990-1003.	10.1	23
129	A framework to quantify impacts of elevated CO2 concentration, global warming and leaf area changes on seasonal variations of water resources on a river basin scale. Journal of Hydrology, 2019, 570, 508-522.	5.4	23
130	Effects of extreme temperature on China's tea production. Environmental Research Letters, 2021, 16, 044040.	5.2	23
131	Terrestrial ecological restoration in China: identifying advances and gaps. Environmental Sciences Europe, 2021, 33, .	5.5	23
132	Water as an economic good and water tariff design. Physics and Chemistry of the Earth, 2003, 28, 209-217.	2.9	22
133	Making global river ecosystem health assessments objective, quantitative and comparable. Science of the Total Environment, 2019, 667, 500-510.	8.0	22
134	Assessment of impact of climate change on the blue and green water resources in large river basins in China. Environmental Earth Sciences, 2015, 74, 6381-6394.	2.7	21
135	Can multi-objective calibration of streamflow guarantee better hydrological model accuracy?. Journal of Hydroinformatics, 2018, 20, 687-698.	2.4	21
136	Quantification of spatial temporal variability of snow cover and hydro-climatic variables based on multi-source remote sensing data in the Swat watershed, Hindukush Mountains, Pakistan. Meteorology and Atmospheric Physics, 2019, 131, 467-486.	2.0	21
137	Large Uncertainties in Runoff Estimations of GLDAS Versions 2.0 and 2.1 in China. Earth and Space Science, 2020, 7, e2019EA000829.	2.6	21
138	Basin-scale high-resolution extraction of drainage networks using 10-m Sentinel-2 imagery. Remote Sensing of Environment, 2021, 255, 112281.	11.0	21
139	A Hybrid Wetland Map for China: A Synergistic Approach Using Census and Spatially Explicit Datasets. PLoS ONE, 2012, 7, e47814.	2.5	20
140	Influence of human activities and climate variability on green and blue water provision in the Heihe River Basin, NW China. Journal of Water and Climate Change, 2015, 6, 800-815.	2.9	20
141	Policy-driven changes in enclosure fisheries of large lakes in the Yangtze Plain: Evidence from satellite imagery. Science of the Total Environment, 2019, 688, 1286-1297.	8.0	20
142	Warming winter, drying spring and shifting hydrological regimes in Northeast China under climate change. Journal of Hydrology, 2022, 606, 127390.	5.4	20
143	Forecasting of rainfall using ocean-atmospheric indices with a fuzzy neural technique. Journal of Hydrology, 2010, 395, 190-198.	5.4	19
144	SIMPLE-G: A multiscale framework for integration of economic and biophysical determinants of sustainability. Environmental Modelling and Software, 2020, 133, 104805.	4.5	19

#	Article	IF	CITATIONS
145	Past and Future Changes in Climate and Water Resources in the Lancang–Mekong River Basin: Current Understanding and Future Research Directions. Engineering, 2022, 13, 144-152.	6.7	19
146	The Water–Energy Nexus of Megacities Extends Beyond Geographic Boundaries: A Case of Beijing. Environmental Engineering Science, 2019, 36, 778-788.	1.6	18
147	Increased Dissolved Organic Carbon Concentrations in Peatâ€Fed UK Water Supplies Under Future Climate and Sulfate Deposition Scenarios. Water Resources Research, 2020, 56, e2019WR025592.	4.2	18
148	Hydropower Production Benefits More From 1.5°C than 2°C Climate Scenario. Water Resources Research, 2020, 56, e2019WR025519.	4.2	18
149	Long-term variability in the water budget and its controls in an oak-dominated temperate forest. Hydrological Processes, 2014, 28, 6054-6066.	2.6	17
150	Historical trends of wetland areas in the agriculture and pasture interlaced zone: A case study of the Huangqihai Lake Basin in northern China. Ecological Modelling, 2015, 318, 168-176.	2.5	17
151	Multidecadal variability of the Tonle Sap Lake flood pulse regime. Hydrological Processes, 2021, 35, e14327.	2.6	17
152	Spatiotemporal variation of enhanced vegetation index in the Amazon Basin and its response to climate change. Physics and Chemistry of the Earth, 2021, 123, 103024.	2.9	17
153	Using stable isotopes of surface water and groundwater to quantify moisture sources across the Yellow River source region. Hydrological Processes, 2019, 33, 1835-1850.	2.6	16
154	Assessing the interlinkage of green and blue water in an arid catchment in Northwest China. Environmental Geochemistry and Health, 2020, 42, 933-953.	3.4	15
155	Evaluation of short-term streamflow prediction methods in Urban river basins. Physics and Chemistry of the Earth, 2021, 123, 103027.	2.9	15
156	An ensemble-based dynamic Bayesian averaging approach for discharge simulations using multiple global precipitation products and hydrological models. Journal of Hydrology, 2018, 558, 405-420.	5.4	14
157	Divergent sensitivity of surface water and energy variables to precipitation product uncertainty in the Tibetan Plateau. Journal of Hydrology, 2020, 581, 124338.	5.4	14
158	The dangers of Arctic zombie wildfires. Science, 2020, 369, 1171-1171.	12.6	14
159	Chlorophyll-a concentrations in 82 large alpine lakes on the Tibetan Plateau during 2003–2017: temporal–spatial variations and influencing factors. International Journal of Digital Earth, 2021, 14, 714-735.	3.9	14
160	Spatiotemporal monitoring and change detection of vegetation cover for drought management in the Middle East. Theoretical and Applied Climatology, 2021, 144, 299-315.	2.8	14
161	Extreme precipitation variability across the <scp>Lancangâ€Mekong</scp> River Basin during 1952–2015 in relation to teleconnections and summer monsoons. International Journal of Climatology, 2022, 42, 2614-2638.	3.5	14
162	Water Footprint Symposium: where next for water footprint and water assessment methodology?. International Journal of Life Cycle Assessment, 2014, 19, 1561-1565.	4.7	13

#	Article	IF	CITATIONS
163	Recursive cross-entropy downscaling model for spatially explicit future land uses: A case study of the Heihe River Basin. Physics and Chemistry of the Earth, 2015, 89-90, 56-64.	2.9	13
164	Quantifying changes in water use and groundwater availability in a megacity using novel integrated systems modeling. Geophysical Research Letters, 2017, 44, 8359-8368.	4.0	13
165	Epistemological dimensions of the water–energy–food nexus approach: reply to discussions of "Challenges in operationalizing the water–energy–food nexusâ€ . Hydrological Sciences Journal, 2018, 63, 1868-1871.	2.6	13
166	WAYS v1: a hydrological model for root zone water storage simulation on a global scale. Geoscientific Model Development, 2019, 12, 5267-5289.	3.6	13
167	Cityâ€levelÂwater withdrawal in China: Accounting methodology and applications. Journal of Industrial Ecology, 2020, 24, 951-964.	5.5	13
168	Environmental flow requirements largely reshape global surface water scarcity assessment. Environmental Research Letters, 2021, 16, 104029.	5.2	13
169	Life Cycle Analysis of Carbon Flow and Carbon Footprint of Harvested Wood Products of Larix principis-rupprechtii in China. Sustainability, 2016, 8, 247.	3.2	12
170	Different seasonality of nitrate export from an agricultural watershed and an urbanized watershed in Midwestern USA. Journal of Hydrology, 2016, 541, 1375-1384.	5.4	12
171	Influence of human interventions on local perceptions of cultural ecosystem services provided by coastal landscapes: Case study of the Huiwen wetland, southern China. Ecosystem Services, 2021, 50, 101311.	5.4	12
172	Theory of stepwise ecological restoration. Chinese Science Bulletin, 2021, 66, 1014-1025.	0.7	12
173	Investigating the potential impact of ecological restoration strategies on people–landscape interactions through cultural ecosystem services: A case study of Xilin Gol, China. Journal of Environmental Management, 2022, 316, 115185.	7.8	12
174	Development of a New Integrated Framework for Improved Rainfall-Runoff Modeling under Climate Variability and Human Activities. Water Resources Management, 2019, 33, 2501-2515.	3.9	11
175	Additional surface-water deficit to meet global universal water accessibility by 2030. Journal of Cleaner Production, 2021, 320, 128829.	9.3	11
176	Divergent and Changing Importance of Glaciers and Snow as Natural Water Reservoirs in the Eastern and Southern Tibetan Plateau. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	11
177	Consumptive water use in cropland and its partitioning: A high-resolution assessment. Science in China Series D: Earth Sciences, 2009, 52, 3309-3314.	0.9	10
178	Reduction and reallocation of water use of products in Beijing. Ecological Indicators, 2016, 61, 893-898.	6.3	10
179	A non-stationary cost-benefit based bivariate extreme flood estimation approach. Journal of Hydrology, 2018, 557, 589-599.	5.4	10
180	Economic growth dominates rising potential flood risk in the Yangtze River and benefits of raising dikes from 1991 to 2015. Environmental Research Letters, 2022, 17, 034046.	5.2	10

#	Article	IF	CITATIONS
181	Increasing Concurrent Drought Probability in Global Main Crop Production Countries. Geophysical Research Letters, 2022, 49, .	4.0	10
182	The pattern of virtual water transfer in China: From the perspective of the virtual water hypothesis. Journal of Cleaner Production, 2022, 346, 131232.	9.3	10
183	A two-stage factorial-analysis-based input-output model for virtual-water quantification and metabolic-network identification in Kyrgyzstan. Journal of Cleaner Production, 2021, 301, 126960.	9.3	9
184	Highâ€Resolution Mapping of Ice Cover Changes in Over 33,000 Lakes Across the North Temperate Zone. Geophysical Research Letters, 2021, 48, e2021GL095614.	4.0	9
185	Three-dimensional water scarcity assessment by considering water quantity, water quality, and environmental flow requirements: Review and prospect. Chinese Science Bulletin, 2020, 65, 4251-4261.	0.7	9
186	Preface "Water, climate, and vegetation: ecohydrology in a changing world". Hydrology and Earth System Sciences, 2012, 16, 4633-4636.	4.9	9
187	Refining soil organic carbon stock estimates for China's palustrine wetlands. Environmental Research Letters, 2015, 10, 124016.	5.2	8
188	Optimal Grassland Locations for Sustainable Photovoltaic Water Pumping Systems in China. Energy Procedia, 2015, 75, 301-307.	1.8	8
189	South–south cooperation for largeâ€scale ecological restoration. Restoration Ecology, 2017, 25, 27-32.	2.9	8
190	Towards Ecological-Economic Integrity in the Jing-Jin-Ji Regional Development in China. Water (Switzerland), 2018, 10, 1653.	2.7	8
191	Genome survey, high-resolution genetic linkage map construction, growth-related quantitative trait locus (QTL) identification and gene location in Scylla paramamosain. Scientific Reports, 2019, 9, 2910.	3.3	8
192	Intercomparison of ten ISI-MIP models in simulating discharges along the Lancang-Mekong River basin. Science of the Total Environment, 2021, 765, 144494.	8.0	8
193	Hydrogeological Criteria to Improve the Sponge City Strategy of China. Frontiers in Environmental Science, 2021, 9, .	3.3	8
194	Links between global terrestrial water storage and large-scale modes of climatic variability. Journal of Hydrology, 2021, 598, 126419.	5.4	8
195	Stormwater Management Modeling in "Sponge City―Construction: Current State and Future Directions. Frontiers in Environmental Science, 2022, 9, .	3.3	8
196	Evaluation of six gauge-based gridded climate products for analyzing long-term historical precipitation patterns across the Lancang-Mekong River Basin. Geography and Sustainability, 2022, 3, 85-103.	4.3	8
197	Scientific debate of Panta Rhei research $\hat{a} \in \hat{a}$ how to advance our knowledge of changes in hydrology and society?. Hydrological Sciences Journal, 0, , 1-3.	2.6	7
198	Impacts of the decreased freeze-up period on primary production in Qinghai Lake. International Journal of Applied Earth Observation and Geoinformation, 2019, 83, 101915.	2.8	7

#	Article	IF	CITATIONS
199	The Diagnostic Value of Chemokine/Chemokine Receptor Pairs in Hepatocellular Carcinoma and Colorectal Liver Metastasis. Journal of Histochemistry and Cytochemistry, 2019, 67, 299-308.	2.5	7
200	Food-Energy-Water Nexus for Multi-scale Sustainable Development. Resources, Conservation and Recycling, 2020, 154, 104565.	10.8	7
201	Applying input-output analysis method for calculation of water footprint and virtual water trade in Gansu Province. Acta Ecologica Sinica, 2012, 32, 6481-6488.	0.1	7
202	Reverse micelles extraction of nattokinase: From model system to real system. Science Bulletin, 2006, 51, 796-801.	9.0	6
203	An Auto-Calibration Tool for the Agricultural Policy Environmental eXtender (APEX) Model. Transactions of the ASABE, 2014, , 1087-1098.	1.1	6
204	Mitigating heat-related mortality risk in Shanghai, China: system dynamics modeling simulations. Environmental Geochemistry and Health, 2020, 42, 3171-3184.	3.4	6
205	Feasibility of coupling PV system with long-distance water transfer: A case study of China's "South-to-North water diversion― Resources, Conservation and Recycling, 2021, 164, 105194.	10.8	6
206	Spring and summer potential flood risk in Northeast China. Journal of Hydrology: Regional Studies, 2021, 38, 100951.	2.4	6
207	Estimating cropland carbon mitigation potentials in China affected by three improved cropland practices. Journal of Mountain Science, 2016, 13, 1840-1854.	2.0	5
208	Hydrology in a Coupled Human–Natural System: Research, Innovation, and Practices. Bulletin of the American Meteorological Society, 2017, 98, ES295-ES298.	3.3	5
209	HPLCâ€MS/MS analysis of anthocyanins in human plasma and urine using protein precipitation and diluteâ€andâ€shoot sample preparation methods, respectively. Biomedical Chromatography, 2018, 32, e4177.	1.7	5
210	Studies on changes in extreme flood peaks resulting from land-use changes need to consider roughness variations. Hydrological Sciences Journal, 2019, 64, 2015-2024.	2.6	5
211	Observed Changes of Köppen Climate Zones Based on Highâ€Resolution Data Sets in the Qinghaiâ€ītibet Plateau. Geophysical Research Letters, 2021, 48, e2021GL096159.	4.0	5
212	Urban Catchment-Scale Blue-Green-Gray Infrastructure Classification with Unmanned Aerial Vehicle Images and Machine Learning Algorithms. Frontiers in Environmental Science, 2022, 9, .	3.3	5
213	Undermined co-benefits of hydropower and irrigation under climate change. Resources, Conservation and Recycling, 2021, 167, 105375.	10.8	4
214	Weakening flood, intensifying hydrological drought severity and decreasing drought probability in Northeast China. Journal of Hydrology: Regional Studies, 2021, 38, 100941.	2.4	4
215	Assessments and Corrections of GLDAS2.0 Forcing Data in Four Large Transboundary Rivers in the Tibetan Plateau and Northeast China. Earth and Space Science, 2022, 9, e2020EA001576.	2.6	4
216	Spatial Aggregation of Global Dry and Wet Patterns Based on the Standard Precipitation Index. Earth's Future, 2022, 10, .	6.3	4

#	Article	IF	CITATIONS
217	Continuous Loss of Global Lake Ice Across Two Centuries Revealed by Satellite Observations and Numerical Modeling. Geophysical Research Letters, 2022, 49, .	4.0	4
218	Numerical Simulation of Na-Tech Cascading Disasters in a Large Oil Depot. International Journal of Environmental Research and Public Health, 2020, 17, 8620.	2.6	3
219	Agricultural Adaptation to Climate Change in China. , 2019, , 111-122.		3
220	The Role of Aquifers in Sustaining the Sponge City Concept in Chinese High-Density Housing. Water (Switzerland), 2022, 14, 929.	2.7	3
221	Urban-rural nitrogen emission from household food consumption in China: spatial pattern and dynamics analysis. International Journal of Sustainable Development and World Ecology, 2019, 26, 415-427.	5.9	2
222	Identification of Urban Rainstorm Waterlogging Based on Multi-source Information Fusion:A Case Study in Futian District, Shenzhen. E3S Web of Conferences, 2021, 259, 01004.	0.5	2
223	Ecological attributes, restoration, and protection of the Baiyangdian in Xiong'an New Area. Acta Ecologica Sinica, 2019, 39, .	0.1	2
224	Prediction of River Pollution Under the Rainfall-Runoff Impact by Artificial Neural Network: A Case Study of Shiyan River, Shenzhen, China. Frontiers in Environmental Science, 0, 10, .	3.3	2
225	From a Spatial Structure Perspective: Spatialâ€Temporal Variation of Climate Redistribution of China Based on the Köppen–Geiger Classification. Geophysical Research Letters, 2022, 49, .	4.0	2
226	Consumers, food supply chain and the nexus. , 2015, , 303-323.		1
227	Water security – China perspective. , 2016, , .		1
228	An amine oxidase gene from mud crab, Scylla paramamosain, regulates the neurotransmitters serotonin and dopamine in vitro. PLoS ONE, 2018, 13, e0204325.	2.5	1
229	GrabRiver: Graph-Theory-Based River Width Extraction From Remote Sensing Imagery. IEEE Geoscience and Remote Sensing Letters, 2022, 19, 1-5.	3.1	1
230	Reply to Comment on â€~Changes of inundation area and water turbidity of Tonle Sap Lake: responses to climate changes or upstream dam construction?'. Environmental Research Letters, 2021, 16, 058002.	5.2	1
231	Scenario Analysis. , 2014, , 25-72.		1
232	Global agricultural green and blue water consumptive uses and virtual water trade. , 2010, , 23-32.		1
233	A new approach to assess water footprint of hydropower: a case study of the Miyun reservoir in China. Acta Ecologica Sinica, 2014, 34, .	0.1	1
234	Comparison of Seven Weibull Distribution Models for Predicting Relative Hydraulic Conductivity. Water Resources Research, 2022, 58, .	4.2	1

#	Article	IF	CITATIONS
235	Studies on protamine purification by surfactant precipitation. Journal of Biotechnology, 2008, 136, S501-S502.	3.8	0
236	Modeling and decoupling control simulation for a virtual coupling heater system. , 2010, , .		0
237	Cover Image, Volume 7, Issue 3. Wiley Interdisciplinary Reviews: Water, 2020, 7, e1446.	6.5	0
238	深度ä,ç;®å®šæ€§ä,‹æ²;æµ·æ′ªæ°´æ°"候åĩ化é€,åº"å†³ç–æ–¹æ³•è⁻"è;°. Chinese Science Bulletin, 2022, , .	0.7	0