List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5145967/publications.pdf Version: 2024-02-01

FUSABETTA AIRI

#	Article	IF	CITATIONS
1	The Effect of Vitamin D3 and Silver Nanoparticles on HaCaT Cell Viability. International Journal of Molecular Sciences, 2022, 23, 1410.	1.8	10
2	Two cases of black human breast milk not related to minocycline. A sphingolipidomic approach. Italian Journal of Food Science, 2022, 34, 132-139.	1.5	0
3	Hypercholesterolemia in Cancer and in Anorexia Nervosa: A Hypothesis for a Crosstalk. International Journal of Molecular Sciences, 2022, 23, 7466.	1.8	3
4	Vitamin D3 as possible diagnostic marker of Eating Disorders. The EuroBiotech Journal, 2021, 5, 24-33.	0.5	2
5	Cholesterol and Sphingolipid Enriched Lipid Rafts as Therapeutic Targets in Cancer. International Journal of Molecular Sciences, 2021, 22, 726.	1.8	39
6	Editorial for Special Issue "Lipid as a Cancer Therapeutic Target― International Journal of Molecular Sciences, 2021, 22, 3610.	1.8	0
7	Spaceflight Induced Disorders: Potential Nutritional Countermeasures. Frontiers in Bioengineering and Biotechnology, 2021, 9, 666683.	2.0	11
8	Inhibition of Ceramide Synthesis Reduces α-Synuclein Proteinopathy in a Cellular Model of Parkinson's Disease. International Journal of Molecular Sciences, 2021, 22, 6469.	1.8	17
9	Vitamin D3 Enriches Ceramide Content in Exosomes Released by Embryonic Hippocampal Cells. International Journal of Molecular Sciences, 2021, 22, 9287.	1.8	7
10	The Multiple Roles of Sphingomyelin in Parkinson's Disease. Biomolecules, 2021, 11, 1311.	1.8	23
11	Nuclear sphingomyelin in neurodegenerative diseases. Neural Regeneration Research, 2021, 16, 2028.	1.6	5
12	<i>>5â€HT2AR</i> and <i>BDNF</i> gene variants in eating disorders susceptibility. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2020, 183, 155-163.	1.1	19
13	Editorial: Lipids in the Brain. Frontiers in Neurology, 2020, 11, 712.	1.1	2
14	Effect of 1α,25(OH)2 Vitamin D3 in Mutant P53 Glioblastoma Cells: Involvement of Neutral Sphingomyelinase1. Cancers, 2020, 12, 3163.	1.7	11
15	Human breast milk as source of sphingolipids for newborns: comparison with infant formulas and commercial cow's milk. Journal of Translational Medicine, 2020, 18, 481.	1.8	18
16	Acid and Neutral Sphingomyelinase Behavior in Radiation-Induced Liver Pyroptosis and in the Protective/Preventive Role of rMnSOD. International Journal of Molecular Sciences, 2020, 21, 3281.	1.8	14
17	Exploring Sphingolipid Implications in Neurodegeneration. Frontiers in Neurology, 2020, 11, 437.	1.1	85
18	Relationship between Fatty Acids Composition/Antioxidant Potential of Breast Milk and Maternal Diet: Comparison with Infant Formulas. Molecules, 2020, 25, 2910.	1.7	7

#	Article	IF	CITATIONS
19	Lysosomal Ceramide Metabolism Disorders: Implications in Parkinson's Disease. Journal of Clinical Medicine, 2020, 9, 594.	1.0	31
20	Vitamin D receptor expression and acid sphingomyelinase activity in prefrontal region of a learning animal model. Archives Italiennes De Biologie, 2020, 157, 120-128.	0.1	2
21	Overweight and erythrocyte polyunsaturated fatty acid changes in menopause. The EuroBiotech Journal, 2020, 4, 144-149.	0.5	2
22	Effect of the Glycemic Index of Meals on Physical Exercise: A Case Report. The EuroBiotech Journal, 2020, 4, 171-177.	0.5	0
23	A Role for Neutral Sphingomyelinase in Wound Healing Induced by Keratinocyte Proliferation upon 1α, 25-Dihydroxyvitamin D3 Treatment. International Journal of Molecular Sciences, 2019, 20, 3634.	1.8	13
24	Gentamicin Targets Acid Sphingomyelinase in Cancer: The Case of the Human Gastric Cancer NCI-N87 Cells. International Journal of Molecular Sciences, 2019, 20, 4375.	1.8	9
25	Niemann-Pick Type A Disease: Behavior of Neutral Sphingomyelinase and Vitamin D Receptor. International Journal of Molecular Sciences, 2019, 20, 2365.	1.8	10
26	Neutral sphingomyelinase increases and delocalizes in the absence of Toll-Like Receptor 4: A new insight for MPTP neurotoxicity. Prostaglandins and Other Lipid Mediators, 2019, 142, 46-52.	1.0	8
27	Neutral Sphingomyelinase Modulation in the Protective/Preventive Role of rMnSOD from Radiation-Induced Damage in the Brain. International Journal of Molecular Sciences, 2019, 20, 5431.	1.8	7
28	In Vitro Anti-Inflammatory Effects of Phenolic Compounds from Moraiolo Virgin Olive Oil (MVOO) in Brain Cells via Regulating the TLR4/NLRP3 Axis. Molecules, 2019, 24, 4523.	1.7	31
29	VDR independent induction of acid-sphingomyelinase by 1,23(OH)2 D3 in gastric cancer cells: Impact on apoptosis and cell morphology. Biochimie, 2018, 146, 35-42.	1.3	10
30	Nuclear Lipid Microdomains Regulate Daunorubicin Resistance in Hepatoma Cells. International Journal of Molecular Sciences, 2018, 19, 3424.	1.8	8
31	Sphingolipids in Inflammation. Mediators of Inflammation, 2018, 2018, 1-3.	1.4	12
32	The Many Facets of Sphingolipids in the Specific Phases of Acute Inflammatory Response. Mediators of Inflammation, 2018, 2018, 1-12.	1.4	25
33	Effect of Vitamin D in HN9.10e Embryonic Hippocampal Cells and in Hippocampus from MPTP-Induced Parkinson's Disease Mouse Model. Frontiers in Cellular Neuroscience, 2018, 12, 31.	1.8	16
34	Alpha-Mannosidosis: Therapeutic Strategies. International Journal of Molecular Sciences, 2018, 19, 1500.	1.8	32
35	Biological properties of Epilobium angustifolium L Journal of Biotechnology, 2017, 256, S26.	1.9	2
36	Origin of α-mannosidase activity in CSF. International Journal of Biochemistry and Cell Biology, 2017, 87, 34-37.	1.2	7

#	Article	IF	CITATIONS
37	Nuclear Lipids in the Nervous System: What they do in Health and Disease. Neurochemical Research, 2017, 42, 321-336.	1.6	21
38	Epilobium angustifolium L.: A medicinal plant with therapeutic properties. The EuroBiotech Journal, 2017, 1, 126-131.	0.5	9
39	Radiation and Thyroid Cancer. International Journal of Molecular Sciences, 2017, 18, 911.	1.8	71
40	Impact of Gravity on Thyroid Cells. International Journal of Molecular Sciences, 2017, 18, 972.	1.8	24
41	Mouse Thyroid Gland Changes in Aging: Implication of Galectin-3 and Sphingomyelinase. Mediators of Inflammation, 2017, 2017, 1-5.	1.4	1
42	Neutral Sphingomyelinase Behaviour in Hippocampus Neuroinflammation of MPTP-Induced Mouse Model of Parkinson's Disease and in Embryonic Hippocampal Cells. Mediators of Inflammation, 2017, 2017, 1-8.	1.4	19
43	Lysosomal alpha-mannosidase and alpha-mannosidosis. Frontiers in Bioscience - Landmark, 2017, 22, 157-167.	3.0	19
44	The music in the brain hemispheres. The EuroBiotech Journal, 2017, 1, 259-263.	0.5	1
45	Localization of nuclear actin in nuclear lipid microdomains of liver and hepatoma cells: Possible involvement of sphingomyelin metabolism. The EuroBiotech Journal, 2017, 1, 155-158.	0.5	0
46	Hypovitaminosis D3, Leukopenia, and Human Serotonin Transporter Polymorphism in Anorexia Nervosa and Bulimia Nervosa. Mediators of Inflammation, 2016, 2016, 1-6.	1.4	17
47	<i>In Vitro</i> Protective Effects of <i>Lycium barbarum</i> Berries Cultivated in Umbria (Italy) on Human Hepatocellular Carcinoma Cells. BioMed Research International, 2016, 2016, 1-9.	0.9	33
48	e-Cadherin in 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-Induced Parkinson Disease. Mediators of Inflammation, 2016, 2016, 1-7.	1.4	12
49	Acid sphingomyelinase as target of Lycium Chinense: promising new action for cell health. Lipids in Health and Disease, 2016, 15, 183.	1.2	21
50	Why high cholesterol levels help hematological malignancies: role of nuclear lipid microdomains. Lipids in Health and Disease, 2016, 15, 4.	1.2	25
51	Very-long-chain fatty acid sphingomyelin in nuclear lipid microdomains of hepatocytes and hepatoma cells: can the exchange from C24:0 to C16:0 affect signal proteins and vitamin D receptor?. Molecular Biology of the Cell, 2015, 26, 2418-2425.	0.9	32
52	Serum deprivation alters lipid profile in HN9.10e embryonic hippocampal cells. Neuroscience Letters, 2015, 589, 83-87.	1.0	9
53	Gentamicin Arrests Cancer Cell Growth: The Intriguing Involvement of Nuclear Sphingomyelin Metabolism. International Journal of Molecular Sciences, 2015, 16, 2307-2319.	1.8	21
54	A Firmer Understanding of the Effect of Hypergravity on Thyroid Tissue: Cholesterol and Thyrotropin Receptor. PLoS ONE, 2014, 9, e98250.	1.1	12

#	Article	IF	CITATIONS
55	How Microgravity Changes Galectin-3 in Thyroid Follicles. BioMed Research International, 2014, 2014, 1-5.	0.9	8
56	Critical Role for the Protons in FRTL-5 Thyroid Cells: Nuclear Sphingomyelinase Induced-Damage. International Journal of Molecular Sciences, 2014, 15, 11555-11565.	1.8	5
57	Nuclear Lipid Microdomain as Resting Place of Dexamethasone to Impair Cell Proliferation. International Journal of Molecular Sciences, 2014, 15, 19832-19846.	1.8	12
58	Reinterpretation of Mouse Thyroid Changes under Space Conditions: The Contribution of Confinement to Damage. Astrobiology, 2014, 14, 563-567.	1.5	4
59	Hypergravity delocalizes thyrotropin receptor (650.3). FASEB Journal, 2014, 28, 650.3.	0.2	1
60	Nuclear Lipid Microdomain as Place of Interaction between Sphingomyelin and DNA during Liver Regeneration. International Journal of Molecular Sciences, 2013, 14, 6529-6541.	1.8	34
61	The Impact of Long-Term Exposure to Space Environment on Adult Mammalian Organisms: A Study on Mouse Thyroid and Testis. PLoS ONE, 2012, 7, e35418.	1.1	30
62	Loss of Parafollicular Cells during Gravitational Changes (Microgravity, Hypergravity) and the Secret Effect of Pleiotrophin. PLoS ONE, 2012, 7, e48518.	1.1	18
63	Thyrotropin Receptor and Membrane Interactions in FRTL-5 Thyroid Cell Strain in Microgravity. Astrobiology, 2011, 11, 57-64.	1.5	20
64	Nuclear lipid microdomains regulate nuclear vitamin D ₃ uptake and influence embryonic hippocampal cell differentiation. Molecular Biology of the Cell, 2011, 22, 3022-3031.	0.9	42
65	Role of intranuclear lipids in health and disease. Clinical Lipidology, 2011, 6, 59-69.	0.4	17
66	Effect of 1α,25â€dihydroxyvitamin D3 in embryonic hippocampal cells. Hippocampus, 2010, 20, 696-705.	0.9	69
67	Intranuclear sphingomyelin is associated with transcriptionally active chromatin and plays a role in nuclear integrity. Biology of the Cell, 2010, 102, 361-375.	0.7	20
68	Thyroid Cell Growth: Sphingomyelin Metabolism as Non-Invasive Marker for Cell Damage Acquired during Spaceflight. Astrobiology, 2010, 10, 811-820.	1.5	14
69	Severe hypocholesterolaemia is often neglected in haematological malignancies. European Journal of Cancer, 2010, 46, 1735-1743.	1.3	25
70	Nuclear lipid microdomains regulate cell function. Communicative and Integrative Biology, 2009, 2, 23-24.	0.6	21
71	Nuclear Phosphatidylcholine and Sphingomyelin Metabolism of Thyroid Cells Changes during Stratospheric Balloon Flight. Journal of Biomedicine and Biotechnology, 2009, 2009, 1-5.	3.0	7
72	IgA Anticardiolipin in Patients with Gastroenteric Tumor. Scholarly Research Exchange, 2009, 2009, 1-4.	0.2	1

#	Article	IF	CITATIONS
73	The nuclear ceramide/diacylglycerol balance depends on the physiological state of thyroid cells and changes during UV-C radiation-induced apoptosis. Archives of Biochemistry and Biophysics, 2008, 478, 52-58.	1.4	26
74	Lipid Microdomains in Cell Nucleus. Molecular Biology of the Cell, 2008, 19, 5289-5295.	0.9	93
75	Phosphatidylcholine/sphingomyelin metabolism crosstalk inside the nucleus. Biochemical Journal, 2008, 410, 381-389.	1.7	37
76	Sphingomyelin-cholesterol and double stranded RNA relationship in the intranuclear complex. Archives of Biochemistry and Biophysics, 2007, 459, 27-32.	1.4	21
77	Signal transducer and activator of transcription 3 and sphingomyelin metabolism in intranuclear complex during cell proliferation. Archives of Biochemistry and Biophysics, 2007, 464, 138-143.	1.4	19
78	Low Levels of Serum Cholesterol/Phospholipids are Associated with the Antiphospholipid Antibodies in Monoclonal Gammopathy. International Journal of Immunopathology and Pharmacology, 2006, 19, 331-337.	1.0	15
79	Antiphospholipid Antibodies in Patients with Cancer. International Journal of Immunopathology and Pharmacology, 2006, 19, 879-888.	1.0	13
80	Nuclear sphingomyelin pathway in serum deprivation-induced apoptosis of embryonic hippocampal cells. Journal of Cellular Physiology, 2006, 206, 189-195.	2.0	33
81	Nuclear sphingomyelin-synthase and protein kinase C δ in melanoma cells. Archives of Biochemistry and Biophysics, 2005, 438, 156-161.	1.4	24
82	The role of intranuclear lipids. Biology of the Cell, 2004, 96, 657-667.	0.7	127
83	Plasmalogens in rat liver chromatin: New molecules involved in cell proliferation. Journal of Cellular Physiology, 2004, 201, 439-446.	2.0	17
84	Selection of thrombogenetic antiphospholipid antibodies in cerebrovascular disease patients. Journal of Neurology, 2003, 250, 593-597.	1.8	8
85	Involvement of nuclear phosphatidylinositol-dependent phospholipases c in cell cycle progression during rat liver regeneration. Journal of Cellular Physiology, 2003, 197, 181-188.	2.0	31
86	Chromatin sphingomyelin changes in cell proliferation and/or apoptosis induced by ciprofibrate. Journal of Cellular Physiology, 2003, 196, 354-361.	2.0	32
87	A possible role of cholesterol-sphingomyelin/phosphatidylcholine in nuclear matrix during rat liver regeneration. Journal of Hepatology, 2003, 38, 623-628.	1.8	36
88	Reverse sphingomyelin-synthase in rat liver chromatin. FEBS Letters, 2003, 549, 152-156.	1.3	28
89	Antiphosphatidylinositol Antibody in Deep Venous Thrombosis Patients. International Journal of Immunopathology and Pharmacology, 2003, 16, 61-66.	1.0	4
90	The presence and the role of chromatin cholesterol in rat liver regeneration. Journal of Hepatology, 2002, 36, 395-400.	1.8	41

ELISABETTA ALBI

#	Article	IF	CITATIONS
91	PHOSPHOLIPID AUTOANTIBODIES: TIME FOR A NEW IMMUNO-ASSAY?. Clinical and Experimental Hypertension, 2002, 24, 511-516.	0.5	3
92	Changes of nuclear membrane fluidity during rat liver regeneration. IUBMB Life, 1999, 47, 1049-1059.	1.5	4
93	Sphingomyelin synthase in rat liver nuclear membrane and chromatin. FEBS Letters, 1999, 460, 369-372.	1.3	53
94	Nuclear Membrane Sphingomyelin–Cholesterol Changes in Rat Liver after Hepatectomy. Biochemical and Biophysical Research Communications, 1999, 262, 692-695.	1.0	29
95	Phosphatidylcholine-Dependent Phospholipase C in Rat Liver Chromatin. Biochemical and Biophysical Research Communications, 1999, 265, 640-643.	1.0	19
96	Nuclear sphingomyelin protects RNA from RNase action. FEBS Letters, 1998, 431, 443-447.	1.3	39
97	Chromatin Neutral Sphingomyelinase and Its Role in Hepatic Regeneration. Biochemical and Biophysical Research Communications, 1997, 236, 29-33.	1.0	67
98	Effect of lipid composition on rat liver nuclear membrane fluidity. , 1997, 15, 181-190.		17
99	CHOLINE BASE EXCHANGE ACTIVITY IN RAT HEPATOCYTE NUCLEI AND NUCLEAR MEMBRANES. Cell Biology International, 1997, 21, 217-221.	1.4	16
100	Rat liver chromatin phospholipids. Lipids, 1994, 29, 715-719.	0.7	59
101	Chromatin phospholipid changes during rat liver development. Cell Biochemistry and Function, 1991, 9, 119-123.	1.4	23
102	Phospholipids in chromatin: Incorporation of [32P]O42â^' in different subcellular fractions of hepatocytes. Cell Biochemistry and Function, 1986, 4, 283-288.	1.4	23

7