Andreas Hector

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5145933/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Innate immunity in cystic fibrosis lung disease. Journal of Cystic Fibrosis, 2012, 11, 363-382.	0.3	191
2	Free DNA in Cystic Fibrosis Airway Fluids Correlates with Airflow Obstruction. Mediators of Inflammation, 2015, 2015, 1-11.	1.4	100
3	Microbial colonization and lung function in adolescents with cystic fibrosis. Journal of Cystic Fibrosis, 2016, 15, 340-349.	0.3	63
4	The role of chitin, chitinases, and chitinase-like proteins in pediatric lung diseases. Molecular and Cellular Pediatrics, 2015, 2, 3.	1.0	52
5	Current concepts of immune dysregulation in cystic fibrosis. International Journal of Biochemistry and Cell Biology, 2014, 52, 108-112.	1.2	47
6	The Chitinase-Like Protein YKL-40 Modulates Cystic Fibrosis Lung Disease. PLoS ONE, 2011, 6, e24399.	1.1	44
7	RNA and Imidazoquinolines Are Sensed by Distinct TLR7/8 Ectodomain Sites Resulting in Functionally Disparate Signaling Events. Journal of Immunology, 2014, 192, 5963-5973.	0.4	38
8	Oxidative stress in cystic fibrosis lung disease: an early event, but worth targeting?. European Respiratory Journal, 2014, 44, 17-19.	3.1	35
9	Fungal Pathogens in CF Airways: Leave or Treat?. Mycopathologia, 2018, 183, 119-137.	1.3	32
10	Current Concepts and Controversies in Innate Immunity of Cystic Fibrosis Lung Disease. Journal of Innate Immunity, 2016, 8, 531-540.	1.8	31
11	Novel Method to Process Cystic Fibrosis Sputum for Determination of Oxidative State. Respiration, 2010, 80, 393-400.	1.2	28
12	Chitinase activation in patients with fungus-associated cystic fibrosis lung disease. Journal of Allergy and Clinical Immunology, 2016, 138, 1183-1189.e4.	1.5	28
13	Eradication of methicillin resistant <i>Staphylococcus aureus</i> detected for the first time in cystic fibrosis: A single center observational study. Pediatric Pulmonology, 2016, 51, 1010-1019.	1.0	27
14	Transcriptomic profile of cystic fibrosis patients identifies type I interferon response and ribosomal stalk proteins as potential modifiers of disease severity. PLoS ONE, 2017, 12, e0183526.	1.1	23
15	Immune Response, Diagnosis and Treatment of Allergic Bronchopulmonary Aspergillosis in Cystic Fibrosis Lung Disease. Current Pharmaceutical Design, 2013, 19, 3669-3678.	0.9	20
16	In Vivo Hypoxia PET Imaging Quantifies the Severity of Arthritic Joint Inflammation in Line with Overexpression of Hypoxia-Inducible Factor and Enhanced Reactive Oxygen Species Generation. Journal of Nuclear Medicine, 2017, 58, 853-860.	2.8	19
17	Staphylococcal Enterotoxins Dose-Dependently Modulate the Generation of Myeloid-Derived Suppressor Cells. Frontiers in Cellular and Infection Microbiology, 2018, 8, 321.	1.8	17
18	The chemokine CCL18 characterises <i>Pseudomonas</i> infections in cystic fibrosis lung disease.	3.1	16

ANDREAS HECTOR

#	Article	IF	CITATIONS
19	Choline Supplementation in Cystic Fibrosis—The Metabolic and Clinical Impact. Nutrients, 2019, 11, 656.	1.7	16
20	Expression and Regulation of Interferon-Related Development Regulator–1 in Cystic Fibrosis Neutrophils. American Journal of Respiratory Cell and Molecular Biology, 2013, 48, 71-77.	1.4	12
21	Update on host-pathogen interactions in cystic fibrosis lung disease. Molecular and Cellular Pediatrics, 2016, 3, 12.	1.0	12
22	GLPG2737 in lumacaftor/ivacaftor-treated CF subjects homozygous for the F508del mutation: A randomized phase 2A trial (PELICAN). Journal of Cystic Fibrosis, 2020, 19, 292-298.	0.3	11
23	CXCR4 ⁺ granulocytes reflect fungal cystic fibrosis lung disease. European Respiratory Journal, 2015, 46, 395-404.	3.1	10
24	Anti-inflammatory role of CD11b+Ly6G+ neutrophilic cells in allergic airway inflammation in mice. Immunology Letters, 2018, 204, 67-74.	1.1	10
25	Fungi in Cystic Fibrosis: Recent Findings and Unresolved Questions. Current Fungal Infection Reports, 2015, 9, 1-5.	0.9	8
26	An informative intragenic microsatellite marker suggests the IL-1 receptor as a genetic modifier in cystic fibrosis. European Respiratory Journal, 2017, 50, 1700426.	3.1	8
27	Human T cells modulate myeloid-derived suppressor cells through a TNF-α-mediated mechanism. Immunology Letters, 2018, 202, 31-37.	1.1	8
28	Increasing sputum levels of gamma-glutamyltransferase may identify cystic fibrosis patients who do not benefit from inhaled glutathione. Journal of Cystic Fibrosis, 2017, 16, 342-345.	0.3	7
29	Airways glutathione S-transferase omega-1 and its A140D polymorphism are associated with severity of inflammation and respiratory dysfunction in cystic fibrosis. Journal of Cystic Fibrosis, 2021, 20, 1053-1061.	0.3	6
30	In Vitro Inhibition of Neutrophil Elastase Activity by Inhaled Anti-Pseudomonas Antibiotics Used in Cystic Fibrosis Patients. Mediators of Inflammation, 2010, 2010, 1-5.	1.4	5