Eli J Fine

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5145920/publications.pdf Version: 2024-02-01

FULFINE

#	Article	IF	CITATIONS
1	DNA targeting specificity of RNA-guided Cas9 nucleases. Nature Biotechnology, 2013, 31, 827-832.	17.5	3,953
2	CRISPR/Cas9 systems targeting β-globin and CCR5 genes have substantial off-target activity. Nucleic Acids Research, 2013, 41, 9584-9592.	14.5	544
3	COSMID: A Web-based Tool for Identifying and Validating CRISPR/Cas Off-target Sites. Molecular Therapy - Nucleic Acids, 2014, 3, e214.	5.1	315
4	TALENs facilitate targeted genome editing in human cells with high specificity and low cytotoxicity. Nucleic Acids Research, 2014, 42, 6762-6773.	14.5	165
5	Quantifying on- and off-target genome editing. Trends in Biotechnology, 2015, 33, 132-140.	9.3	127
6	Quantifying Genome-Editing Outcomes at Endogenous Loci with SMRT Sequencing. Cell Reports, 2014, 7, 293-305.	6.4	115
7	An online bioinformatics tool predicts zinc finger and TALE nuclease off-target cleavage. Nucleic Acids Research, 2014, 42, e42-e42.	14.5	109
8	Nuclease Target Site Selection for Maximizing On-target Activity and Minimizing Off-target Effects in Genome Editing. Molecular Therapy, 2016, 24, 475-487.	8.2	100
9	CRISPR/Cas9 microinjection in oocytes disables pancreas development in sheep. Scientific Reports, 2017, 7, 17472.	3.3	61
10	SAPTA: a new design tool for improving TALE nuclease activity. Nucleic Acids Research, 2014, 42, e47-e47.	14.5	49
11	Preclinical Development of a Hematopoietic Stem and Progenitor Cell Bioengineered Factor VIII Lentiviral Vector Gene Therapy for Hemophilia A. Human Gene Therapy, 2018, 29, 1183-1201.	2.7	39
12	TALENs Facilitate Single-step Seamless SDF Correction of F508del CFTR in Airway Epithelial Submucosal Gland Cell-derived CF-iPSCs. Molecular Therapy - Nucleic Acids, 2016, 5, e273.	5.1	38
13	Trans-spliced Cas9 allows cleavage of HBB and CCR5 genes in human cells using compact expression cassettes. Scientific Reports, 2015, 5, 10777.	3.3	34
14	Nanomedicine: Tiny Particles and Machines Give Huge Gains. Annals of Biomedical Engineering, 2014, 42, 243-259.	2.5	26
15	Codon Swapping of Zinc Finger Nucleases Confers Expression in Primary Cells and In Vivo from a Single Lentiviral Vector. Current Gene Therapy, 2014, 14, 365-376.	2.0	8
16	Identification of Off-Target Cleavage Sites of Zinc Finger Nucleases and TAL Effector Nucleases Using Predictive Models. Methods in Molecular Biology, 2014, 1114, 371-383.	0.9	5
17	Strategies to Determine Off-Target Effects of Engineered Nucleases. Advances in Experimental Medicine and Biology, 2016, , 187-222.	1.6	0