
M Carmen Martin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5145796/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Speed of sound data and acoustic virial coefficients of two binary (N2Â+ÂH2) mixtures at temperatures between (260 and 350) K and at pressures between (0.5 and 20) MPa. Journal of Chemical Thermodynamics, 2022, 171, 106791.	2.0	4
2	Measurements and predictions of densities and viscosities in CO2Â+Âhydrocarbon mixtures at high pressures and temperatures: CO2Â+Ân-pentane and CO2Â+Ân-hexane blends. Journal of Molecular Liquids, 2022, 360, 119518.	4.9	4
3	Thermodynamic characterization of the (CO2 + O2) binary system for the development of models for CCS processes: Accurate experimental (p, ï; T) data and virial coefficients. Journal of Supercritical Fluids, 2021, 169, 105074.	3.2	5
4	Speed of sound data, derived perfect-gas heat capacities, and acoustic virial coefficients of a calibration standard natural gas mixture and a low-calorific H2-enriched mixture. Journal of Chemical Thermodynamics, 2021, 158, 106434.	2.0	1
5	Speed of sound and phase equilibria for (CO2Â+ÂC3H8) mixtures. Journal of Chemical Thermodynamics, 2021, 158, 106464.	2.0	2
6	Viscosities and densities of different alcohols (1-propanol, 2-propanol, 1-pentanol and 2-pentanol) at high pressures. Journal of Molecular Liquids, 2021, 344, 117744.	4.9	5
7	Density and viscosity measurements of (piperazine + water) and (piperazine + 2-dimethylaminoethanol + water) at high pressures. Journal of Chemical Thermodynamics 2020, 141, 105960.	, 2.0	4
8	Speed of sound for three binary (CH4Â+ÂH2) mixtures from pÂ=Â(0.5 up to 20) MPa at TÂ=Â(273.16 to 375) K. International Journal of Hydrogen Energy, 2020, 45, 4765-4783.	7.1	8
9	Vapor-liquid equilibria of the binary systems (cyclohexanone + 2-heptanone) and (cyclohexanone +) Tj ETQq1 1 0.	784314 r	gBT /Overlo
10	Density and viscosity of aqueous solutions of Methyldiethanolamine (MDEA)Â+ÂDiethanolamine (DEA) at high pressures. Journal of Chemical Thermodynamics, 2020, 148, 106141.	2.0	10
11	Speeds of sound for (CH4 + He) mixtures from p = (0.5 to 20) MPa at T = (273.16 to 375) K. Thermodynamics, 2019, 139, 105869.	Journal of 2.0	Chemical
12	Thermodynamic characterization of deep eutectic solvents at high pressures. Fluid Phase Equilibria, 2019, 500, 112249.	2.5	34
13	A novel technique based in a cylindrical microwave resonator for high pressure phase equilibrium determination. Journal of Chemical Thermodynamics, 2019, 135, 124-132.	2.0	5
14	The Boltzmann project. Metrologia, 2018, 55, R1-R20.	1.2	49
15	Vapor-liquid equilibria and excess enthalpies of the binary systems 1-pentanol or 2-pentanol and 1-hexene or 1,2,4-trimethylbenzene for the development of biofuels. Fluid Phase Equilibria, 2018, 460, 85-94.	2.5	5
16	Characterization of an Ecuadorian crude using a vibrating-tube densimeter and a vibrating-wire viscometer. Petroleum Science and Technology, 2018, 36, 2077-2083.	1.5	3
17	Viscosities of binary mixtures containing 2-butanol + hydrocarbons (2,2,4-trimethylpentane or) Tj ETQq1 1 0 Journal of Chemical Thermodynamics, 2018, 125, 180-185.	.784314 r 2.0	rgBT /Overlo 4
18	Density and viscosity measurements of aqueous amines at high pressures: DEA-water, DMAE-water and TEA-water mixtures. Journal of Chemical Thermodynamics, 2017, 112, 227-239.	2.0	20

#	Article	IF	CITATIONS
19	Thermophysical properties of 1,2,4-trimethylbenzene in admixtures with 1-butanol or 2-butanol at high pressures. Journal of Chemical Thermodynamics, 2017, 111, 41-51.	2.0	11
20	Determination of density and excess molar volume of dimethyl sulfoxide + 1-allyl-3-methylimidazolium chloride mixtures at high pressure. Journal of Supercritical Fluids, 2017, 130, 76-83.	3.2	3
21	Updated determination of the molar gas constant <i>R</i> by acoustic measurements in argon at UVa-CEM. Metrologia, 2017, 54, 663-673.	1.2	18
22	Contributing to accurate high pressure viscosity measurements: Vibrating wire viscometer and falling body viscometer techniques. Journal of Chemical Thermodynamics, 2016, 96, 104-116.	2.0	28
23	Viscosity and density measurements of aqueous amines at high pressures: MDEA-water and MEA-water mixtures for CO2 capture. Journal of Chemical Thermodynamics, 2016, 98, 231-241.	2.0	35
24	Viscosities of binary mixtures containing 1-butanol + 2,2,4-trimethylpentane or + 1,2,4-trimethylbenzene at high pressures for the thermophysical characterization of biofuels. Journal of Chemical Thermodynamics, 2016, 102, 140-146.	2.0	12
25	Speeds of sound for a biogas mixture CH 4 + N 2 + CO 2 + CO from p = (1–12) MPa at T = (273, 300 and 325) K measured with a spherical resonator. Journal of Chemical Thermodynamics, 2016, 102, 348-356.	2.0	11
26	Characterizing second generation biofuels: Excess enthalpies and vapour-liquid equilibria of the binary mixtures containing 1-pentanol or 2-pentanol and n-hexane. Fluid Phase Equilibria, 2016, 425, 177-182.	2.5	5
27	Heat capacities and acoustic virial coefficients for a synthetic coal mine methane mixture by speed of sound measurements at T = (273.16 and 250.00) K. Journal of Chemical Thermodynamics, 2016, 97, 137-141.	2.0	6
28	Volumetric behaviour of (carbon dioxide + hydrocarbon) mixtures at high pressures. Journal of Supercritical Fluids, 2016, 110, 103-109.	3.2	20
29	Isobaric heat capacity at high pressure, density, and viscosity of (diphenyl ether + biphenyl) mixtures. Journal of Chemical Thermodynamics, 2016, 93, 86-94.	2.0	11
30	Thermodynamics properties, VLE and H E , of the systems 2-pentanol and cyclohexane or methylbenzene for contributing to the knowledge of new biofuels. Fluid Phase Equilibria, 2016, 409, 92-97.	2.5	7
31	Experimental analysis of performance, greenhouse gas emissions and economic parameters for two cooling systems in a public administration building. Energy and Buildings, 2015, 108, 145-155.	6.7	11
32	Integration of biogas in the natural gas grid: Thermodynamic characterization of a biogas-like mixture. Journal of Chemical Thermodynamics, 2015, 84, 60-66.	2.0	15
33	Vapour–liquid equilibria of the ternary mixture (1-pentanol+2,2,4-trimethylpentane+heptane) and the binary mixture (2,2,4-trimethylpentane+heptane) at T=313.15K for the characterization of second generation biofuels. Fluid Phase Equilibria, 2015, 405, 101-106.	2.5	4
34	Progress towards an acoustic determination of the Boltzmann constant at CEM-UVa. Metrologia, 2015, 52, S257-S262.	1.2	12
35	Densities, viscosities, and isobaric heat capacities of the system (1-butanol+cyclohexane) at high pressures. Journal of Chemical Thermodynamics, 2014, 74, 153-160.	2.0	15
36	Measurement and prediction of high-pressure viscosities of biodiesel fuels. Fuel, 2014, 122, 223-228.	6.4	44

#	Article	IF	CITATIONS
37	Phase equilibrium properties of binary and ternary mixtures containing 2-butanol, 2,2,4-trimethylpentane and 1-hexene at 313.15K. Fluid Phase Equilibria, 2014, 369, 33-38.	2.5	3
38	Thermodynamic behaviour of second generation biofuels: Vapour–liquid equilibria and excess enthalpies of the binary mixtures 2-pentanol and n-heptane or 2,2,4-trimethylpentane. Fluid Phase Equilibria, 2014, 384, 89-94.	2.5	7
39	Speeds of sound in (0.95 N2+0.05 CO and 0.9 N2+0.1 CO) gas mixtures at T=(273 and 325)K and pressure up to 10MPa. Journal of Chemical Thermodynamics, 2014, 79, 224-229.	2.0	11
40	Density, Viscosity, and Isobaric Heat Capacity of the Mixture (1-Butanol + 1-Hexene). Journal of Chemical & Engineering Data, 2013, 58, 2717-2723.	1.9	19
41	Vapour–liquid equilibria and excess enthalpies of the binary mixtures 1-pentanol with 2,2,4-trimethylpentane or n-heptane. Fluid Phase Equilibria, 2013, 338, 95-99.	2.5	13
42	Vapour–liquid equilibria of binary and ternary mixtures containing 1-butanol, 2,2,4-trimethylpentane and 1-hexene at T=313.15K. Journal of Chemical Thermodynamics, 2013, 63, 164-168.	2.0	6
43	Heat capacities and densities of the binary mixtures containing ethanol, cyclohexane or 1-hexene at high pressures. Journal of Chemical Thermodynamics, 2013, 57, 550-557.	2.0	21
44	Vapor–Liquid Equilibria of Binary Mixtures Containing 2-Butanol and Hydrocarbons at 313.15 K. Journal of Chemical & Engineering Data, 2012, 57, 982-987.	1.9	11
45	Comparative study of working fluids for a Rankine cycle operating at low temperature. Fuel Processing Technology, 2012, 103, 71-77.	7.2	32
46	Vapor–Liquid Equilibria of Binary Mixtures Containing 1-Butanol and Hydrocarbons at 313.15 K. Journal of Chemical & Engineering Data, 2012, 57, 114-119.	1.9	20
47	Thermodynamic characterization of second generation biofuels: Vapour–liquid equilibria and excess enthalpies of the binary mixtures 1-pentanol and cyclohexane or toluene. Fluid Phase Equilibria, 2012, 317, 127-131.	2.5	18
48	Phase equilibrium properties of the ternary mixture dibutyl ether+toluene+heptane at 313.15K. Fluid Phase Equilibria, 2012, 317, 84-88.	2.5	4
49	World geothermal power production status: Energy, environmental and economic study of high enthalpy technologies. Energy, 2012, 42, 10-18.	8.8	142
50	A technical, economical and market review of organic Rankine cycles for the conversion of low-grade heat for power generation. Renewable and Sustainable Energy Reviews, 2012, 16, 4175-4189.	16.4	435
51	Thermodynamic characterization of the mixture (1-butanol+iso-octane): Densities, viscosities, and isobaric heat capacities at high pressures. Journal of Chemical Thermodynamics, 2012, 44, 75-83.	2.0	37
52	An experimental setup for isobaric heat capacities for viscous fluids at high pressure: Squalane, bis(2-ethylhexyl) sebacate and bis(2-ethylhexyl) phthalate. Journal of Chemical Thermodynamics, 2012, 49, 75-80.	2.0	11
53	Thermodynamic properties of biofuels: Heat capacities of binary mixtures containing ethanol and hydrocarbons up to 20 MPa and the pure compounds using a new flow calorimeter. Journal of Chemical Thermodynamics, 2011, 43, 1893-1896.	2.0	13
54	New (p,ij̃T) data for carbon dioxide – Nitrogen mixtures from (250 to 400)K at pressures up to 20MPa. Journal of Chemical Thermodynamics, 2011, 43, 1950-1953.	2.0	19

#	Article	IF	CITATIONS
55	Low temperature heat source for power generation: Exhaustive analysis of a carbon dioxide transcritical power cycle. Energy, 2011, 36, 5497-5507.	8.8	67
56	Thermodynamic characterization of bio-fuels: Excess functions for binary mixtures containing ETBE and hydrocarbons. Energy, 2010, 35, 759-763.	8.8	8
57	An Apparatus Based on a Spherical Resonator for Measuring the Speed of Sound in Gases and for Determining the Boltzmann Constant. International Journal of Thermophysics, 2010, 31, 1294-1309.	2.1	15
58	Thermodynamic Properties of Binary and Ternary Mixtures Containing Di-isopropyl Ether, 2-Propanol, and Benzene at <i>T</i> = 313.15 K. Journal of Chemical & Engineering Data, 2010, 55, 2741-2745.	1.9	7
59	Thermodynamics of biofuels: Excess enthalpies for binary mixtures involving ethyl 1,1-dimethylethyl ether and hydrocarbons at different temperatures using a new flow calorimeter. Journal of Chemical Thermodynamics, 2009, 41, 759-763.	2.0	14
60	Thermodynamics of fuels with a bio-synthetic component (IV): (Vapor+liquid) equilibrium data for the ternary mixture (ethyl 1,1-dimethylethyl ether+1-hexene+toluene) at T=313.15K. Journal of Chemical Thermodynamics, 2009, 41, 189-192.	2.0	10
61	Automated densimetric system: Measurements and uncertainties for compressed fluids. Journal of Chemical Thermodynamics, 2009, 41, 632-638.	2.0	115
62	High-pressure isobaric heat capacities using a new flow calorimeter. Journal of Supercritical Fluids, 2008, 46, 258-264.	3.2	32
63	Thermodynamics of Fuels with a Biosynthetic Component:  Vaporâ^'Liquid Equilibrium Data for Binary and Ternary Mixtures Containing Ethyl 1,1-Dimethylethyl Ether,n-Heptane, and Toluene atT= 313.15 K. Journal of Chemical & Engineering Data, 2006, 51, 2091-2095.	1.9	13
64	Vaporâ^'Liquid Equilibrium of Binary and Ternary Mixtures Containing Isopropyl Ether, 2-Butanol, and Benzene atT= 313.15 K. Journal of Chemical & Engineering Data, 2006, 51, 148-152.	1.9	12
65	Phase equilibria properties of binary and ternary systems containing di-isopropyl ether+isobutanol+benzene at 313.15K. Fluid Phase Equilibria, 2006, 239, 178-182.	2.5	8
66	Low-grade coal and biomass co-combustion on fluidized bed: exergy analysis. Energy, 2006, 31, 330-344.	8.8	37
67	Phase equilibrium properties of binary and ternary systems containing di-isopropyl ether+1-butanol+benzene at 313.15K. Journal of Chemical Thermodynamics, 2006, 38, 547-553.	2.0	10
68	Speeds of sound in {(1â^'x)CH4+xN2} with x=(0.10001, 0.19999, and 0.5422) at temperatures between 170K and 400K and pressures up to 30MPa. Journal of Chemical Thermodynamics, 2006, 38, 929-937.	2.0	26
69	Measurement of the (pressure, density, temperature) relation of two (methane+nitrogen) gas mixtures at temperatures between 240 and 400K and pressures up to 20MPa using an accurate single-sinker densimeter. Journal of Chemical Thermodynamics, 2006, 38, 916-922.	2.0	34
70	Excess enthalpies of binary and ternary mixtures containing tert-amyl methyl ether (TAME), tert-amyl alcohol (TAOH) and hexane at 298.15 and 313.15 K. Fluid Phase Equilibria, 2004, 217, 145-155.	2.5	4
71	Vapor–liquid equilibrium of octane-enhancing additives in gasolines. Fluid Phase Equilibria, 2004, 217, 157-164.	2.5	17
72	Characterization and modelling of a gasoline containing 1,1-dimethylethyl methyl ether (MTBE), diisopropyl ether (DIPE) or 1,1-dimethylpropyl methyl ether (TAME) as fuel oxygenate based on new isothermal binary vapour–liquid data. Fluid Phase Equilibria, 2004, 220, 105-112.	2.5	40

#	Article	IF	CITATIONS
73	Vapor–liquid equilibrium of octane-enhancing additives in gasolines. Fluid Phase Equilibria, 2003, 212, 81-95.	2.5	15
74	Thermodynamics of Octane-Enhancing Additives in Gasolines:  Vaporâ^'Liquid Equilibrium of Ternary Mixtures Containing Di-isopropyl Ether or Cyclohexane and 1-Hexene + Benzene at 313.15 K. Journal of Chemical & Engineering Data, 2002, 47, 316-321.	1.9	12
75	Isothermal v.l.e. and excess molar Gibbs energy of binary and ternary mixtures containing diisopropyl ether,n -heptane and isopropanol at T= 313.15 K. Journal of Chemical Thermodynamics, 2002, 34, 13-28.	2.0	23
76	Vapor–liquid equilibrium of octane-enhancing additives in gasolines. Fluid Phase Equilibria, 2002, 193, 289-301.	2.5	8
77	Thermodynamics of Octane-Enhancing Additives in Gasolines:  Vaporâ^'Liquid Equilibrium of Binary and Ternary Mixtures Containing Di-isopropyl Ether or Heptane and 1-Hexene + Cyclohexane at 313.15 K. Journal of Chemical & Engineering Data, 2001, 46, 1574-1579.	1.9	18
78	Vapor–liquid equilibrium of octane-enhancing additives in gasolines. Fluid Phase Equilibria, 2001, 182, 229-239.	2.5	16
79	Vapour–liquid equilibrium of octane-enhancing additives in gasolines. Fluid Phase Equilibria, 2001, 182, 241-255.	2.5	19
80	Vapor–liquid equilibrium of octane-enhancing additives in gasolines. Fluid Phase Equilibria, 2001, 191, 71-82.	2.5	13
81	Experimental investigation of the vapor–liquid equilibrium at 313.15 K of the ternary system tert-amylmethyl ether (TAME)+n-heptane+methanol. Fluid Phase Equilibria, 1999, 165, 197-208.	2.5	19
82	Phase equilibrium properties of binary and ternary systems containing tert-amylmethyl ether (TAME) as oxygenate additive and gasoline substitution hydrocarbons at 313.15 K. Fluid Phase Equilibria, 1999, 156, 73-87.	2.5	36
83	Excess thermodynamic functions for ternary systems containing fuel oxygenates and substitution hydrocarbons. Fluid Phase Equilibria, 1998, 152, 265-276.	2.5	40
84	Excess enthalpies of (heptane + ethyl 1,1-dimethylethyl ether + ethanol) at the temperatures 298.15 K and atmospheric pressure. Journal of Chemical Thermodynamics, 1995, 27, 1017-1023.	2.0	15
85	Vapor-liquid equilibria of binary mixtures containing methyl tert-butyl ether (MTBE) and/or substitution hydrocarbons at 298.15 K and 313.15 K. Fluid Phase Equilibria, 1995, 110, 219-230.	2.5	58
86	Vapor-Liquid Equilibrium Data at 298.15 K for Binary Systems Containing Methyl Acetate or Methanol with 2-Methoxyethanol or 2-Ethoxyethanol. Journal of Chemical & Engineering Data, 1994, 39, 535-537.	1.9	21
87	Salt Effect on the Vapor-Liquid Equilibrium of Methyl Acetate + Methanol at 298.15 K. Journal of Chemical & Engineering Data, 1994, 39, 538-540.	1.9	11
88	Vapor-liquid equilibrium data, at 298.15 K, for six binary systems containing methyl acetate or methanol, with acetonitrile, nitromethane or nitroethane. Fluid Phase Equilibria, 1992, 74, 243-252.	2.5	10
89	Vapor-liquid equilibrium data at 25�C for six binary systems containing methyl acetate or methanol, with dichloromethane, chloroform, or 1,2-trans-dichloroethylene. Journal of Solution Chemistry, 1991, 20, 87-95.	1.2	16