Huaguang Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5145677/publications.pdf

Version: 2024-02-01

361045 454577 1,397 31 20 30 citations h-index g-index papers 31 31 31 2069 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Intensively competitive adsorption for heavy metal ions by PAMAM-SBA-15 and EDTA-PAMAM-SBA-15 inorganic–organic hybrid materials. Microporous and Mesoporous Materials, 2007, 103, 316-324.	2.2	182
2	Natural halloysite nanotubes as mesoporous carriers for the loading of ibuprofen. Microporous and Mesoporous Materials, 2013, 179, 89-98.	2.2	132
3	C-Type Starch from High-Amylose Rice Resistant Starch Granules Modified by Antisense RNA Inhibition of Starch Branching Enzyme. Journal of Agricultural and Food Chemistry, 2010, 58, 7383-7388.	2.4	96
4	Synthesis of Sn-doped ZnO nanorods and their photocatalytic properties. Materials Research Bulletin, 2011, 46, 1107-1112.	2.7	95
5	Characterization and Antioxidant Activity of the Complex of Tea Polyphenols and Oat \hat{l}^2 -Glucan. Journal of Agricultural and Food Chemistry, 2011, 59, 10737-10746.	2.4	94
6	Granule Structure and Distribution of Allomorphs in C-Type High-Amylose Rice Starch Granule Modified by Antisense RNA Inhibition of Starch Branching Enzyme. Journal of Agricultural and Food Chemistry, 2010, 58, 11946-11954.	2.4	93
7	Nanostructured FeNi ₃ Incorporated with Carbon Doped with Multiple Nonmetal Elements for the Oxygen Evolution Reaction. ChemSusChem, 2018, 11, 2703-2709.	3.6	75
8	Electrochemical oxygen evolution reaction efficiently boosted by thermal-driving core–shell structure formation in nanostructured FeNi/S, N-doped carbon hybrid catalyst. Nanoscale, 2018, 10, 16911-16918.	2.8	70
9	Solvothermal synthesis of Cu-doped ZnO nanowires with visible light-driven photocatalytic activity. Materials Letters, 2012, 74, 236-238.	1.3	66
10	Structure and physicochemical properties of starches in lotus (<i><scp>N</scp>elumbo nucifera</i>) Tj ETQq0 (O 0 18BT /0	Overlock 10 Tf
11	Active sites contribution from nanostructured interface of palladium and cerium oxide with enhanced catalytic performance for alcohols oxidation in alkaline solution. Journal of Energy Chemistry, 2018, 27, 395-403.	7.1	50
12	Reactivity Enhancement of 2-Propanol Photocatalysis on SO ₄ ^{2â^²} /TiO ₂ : Insights from Solid-State NMR Spectroscopy. Environmental Science & Description (Solid - Solid -	4.6	49
13	Acidity of sulfated tin oxide and sulfated zirconia: A view from solid-state NMR spectroscopy. Catalysis Communications, 2009, 10, 920-924.	1.6	45
14	Periosteum Extracellularâ€Matrixâ€Mediated Acellular Mineralization during Bone Formation. Advanced Healthcare Materials, 2018, 7, 1700660.	3.9	43
15	Local structure of hydroxy–peroxy apatite: A combined XRD, FT-IR, Raman, SEM, and solid-state NMR study. Journal of Physics and Chemistry of Solids, 2007, 68, 1863-1871.	1.9	36
16	Visible-Light Mediated Diarylselenylative Cyclization of 1,6-Enynes. Journal of Organic Chemistry, 2021, 86, 1273-1280.	1.7	32
17	Formation, Location, and Photocatalytic Reactivity of Methoxy Species on Keggin 12-H ₃ PW ₁₂ O ₄₀ : A Joint Solid-State NMR Spectroscopy and DFT Calculation Study. Journal of Physical Chemistry C, 2008, 112, 15765-15770.	1.5	31
18	Moisture retention and antibacterial activity of modified chitosan by hydrogen peroxide. Journal of Applied Polymer Science, 2002, 86, 1724-1730.	1.3	25

#	Article	IF	CITATIONS
19	Microstructure and in vitro Bioactivity of Silicon-Substituted Hydroxyapatite. Silicon, 2017, 9, 543-553.	1.8	25
20	A two-dimensional Ni(<scp>ii</scp>) coordination polymer based on a 3,5-bis(1′,2′,4′-triazol-1′-yl)pyr ligand for water electro-oxidation. Catalysis Science and Technology, 2019, 9, 1769-1773.	idine 2.1	21
21	Solid-State ⁶³ Cu, ⁶⁵ Cu, and ³¹ P NMR Spectroscopy of Photoluminescent Copper(I) Triazole Phosphine Complexes. Journal of Physical Chemistry A, 2015, 119, 8279-8293.	1.1	16
22	Visible-light-induced ligand to metal charge transfer excitation enabled phosphorylation of aryl halides. Chemical Communications, 2021, 57, 5702-5705.	2.2	16
23	FeO-Based Hierarchical Structures on FTO Substrates and Their Photocurrent. ACS Omega, 2020, 5, 2205-2213.	1.6	12
24	Synthesis, structure, and photoluminescence properties of coordination polymers of 4,4′,4′,4′,4′′,4′倲-triazol-1′-yl)pyridine. Cry 534-545.	∕s tÆn gCor	nm 1 2020, 22
25	Thermal Annealing Effect of Coâ^'Nâ^'C/Carbon Nanotube on the Electrochemical Oxygen Reduction Reaction. Energy Technology, 2018, 6, 2394-2398.	1.8	8
26	Solid-state NMR and XRD study of $\hat{l}\pm$ -SiAlON powders prepared by combustion synthesis. Journal of Alloys and Compounds, 2007, 439, 268-274.	2.8	5
27	Quinine Acesulfamates. Crystal Growth and Design, 2017, 17, 58-66.	1.4	5
28	Synthesis, structure, and fluorescence properties of coordination polymers of 3,5-bis(1′,2′,4′-triazol-1′-yl) pyridine. CrystEngComm, 2021, 23, 1744-1755.	1.3	5
29	Synthesis and Characterization of a Novel Diblock Copolymer with a Polyrotoxane Block. Polymer Bulletin, 2008, 61, 53-62.	1.7	4
30	Anatomical and chemical characteristics of culm of rice brittle mutant bc7(t). Functional Plant Biology, 2011, 38, 227.	1.1	2
31	Imaging Metalâ^'Organic Frameworks (MOFs) Using Cryo-TEM and Direct Electron-Detection Camera. Microscopy and Microanalysis, 2019, 25, 1724-1725.	0.2	0