
Tom C Hobman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5145387/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Zika virus inhibits type″ interferon production and downstream signaling. EMBO Reports, 2016, 17, 1766-1775.	2.0	252
2	Engineered ACE2 receptor traps potently neutralize SARS-CoV-2. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 28046-28055.	3.3	219
3	Characterization of the interactions between mammalian PAZ PIWI domain proteins and Dicer. EMBO Reports, 2004, 5, 189-194.	2.0	188
4	Nsp1 protein of SARS-CoV-2 disrupts the mRNA export machinery to inhibit host gene expression. Science Advances, 2021, 7, .	4.7	154
5	Sialic acid-containing glycolipids mediate binding and viral entry of SARS-CoV-2. Nature Chemical Biology, 2022, 18, 81-90.	3.9	141
6	Hsp90 Regulates the Function of Argonaute 2 and Its Recruitment to Stress Granules and P-Bodies. Molecular Biology of the Cell, 2009, 20, 3273-3284.	0.9	122
7	Endothelium Infection and Dysregulation by SARS-CoV-2: Evidence and Caveats in COVID-19. Viruses, 2021, 13, 29.	1.5	118
8	Zika Virus Hijacks Stress Granule Proteins and Modulates the Host Stress Response. Journal of Virology, 2017, 91, .	1.5	96
9	GERp95, a Membrane-associated Protein that Belongs to a Family of Proteins Involved in Stem Cell Differentiation. Molecular Biology of the Cell, 1999, 10, 3357-3372.	0.9	94
10	IGF1R is an entry receptor for respiratory syncytial virus. Nature, 2020, 583, 615-619.	13.7	84
11	MicroRNAs regulate the immunometabolic response to viral infection in the liver. Nature Chemical Biology, 2015, 11, 988-993.	3.9	76
12	Human Sertoli cells support high levels of Zika virus replication and persistence. Scientific Reports, 2018, 8, 5477.	1.6	75
13	Flavivirus Infection Impairs Peroxisome Biogenesis and Early Antiviral Signaling. Journal of Virology, 2015, 89, 12349-12361.	1.5	73
14	SARS-CoV-2 Nonstructural Protein 1 Inhibits the Interferon Response by Causing Depletion of Key Host Signaling Factors. Journal of Virology, 2021, 95, e0026621.	1.5	72
15	Rubella Virus Capsid Associates with Host Cell Protein p32 and Localizes to Mitochondria. Journal of Virology, 2000, 74, 5569-5576.	1.5	71
16	The Capsid-Binding Nucleolar Helicase DDX56 Is Important for Infectivity of West Nile Virus. Journal of Virology, 2011, 85, 5571-5580.	1.5	71
17	The West Nile Virus Capsid Protein Blocks Apoptosis through a Phosphatidylinositol 3-Kinase-Dependent Mechanism. Journal of Virology, 2013, 87, 872-881.	1.5	65
18	MicroRNAs upregulated during HIV infection target peroxisome biogenesis factors: Implications for virus biology, disease mechanisms and neuropathology. PLoS Pathogens, 2017, 13, e1006360.	2.1	65

Τοм C Ηοβμαν

#	Article	IF	CITATIONS
19	Phosphorylation of Rubella Virus Capsid Regulates Its RNA Binding Activity and Virus Replication. Journal of Virology, 2003, 77, 1764-1771.	1.5	60
20	Interactions between Rubella Virus Capsid and Host Protein p32 Are Important for Virus Replication. Journal of Virology, 2005, 79, 10807-10820.	1.5	55
21	Rubella Virus Capsid Protein Interacts with Poly(A)-Binding Protein and Inhibits Translation. Journal of Virology, 2008, 82, 4284-4294.	1.5	53
22	The helicase activity of DDX56 is required for its role in assembly of infectious West Nile virus particles. Virology, 2012, 433, 226-235.	1.1	47
23	Human Fetal Astrocytes Infected with Zika Virus Exhibit Delayed Apoptosis and Resistance to Interferon: Implications for Persistence. Viruses, 2018, 10, 646.	1.5	47
24	The Unique Cofactor Region of Zika Virus NS2B–NS3 Protease Facilitates Cleavage of Key Host Proteins. ACS Chemical Biology, 2018, 13, 2398-2405.	1.6	45
25	West Nile Virus Infection Causes Endocytosis of a Specific Subset of Tight Junction Membrane Proteins. PLoS ONE, 2012, 7, e37886.	1.1	45
26	The Virus-Host Interplay: Biogenesis of +RNA Replication Complexes. Viruses, 2015, 7, 4385-4413.	1.5	42
27	Ago1 and Dcr1, Two Core Components of the RNA Interference Pathway, Functionally Diverge from Rdp1 in Regulating Cell Cycle Events in Schizosaccharomyces pombe. Molecular Biology of the Cell, 2004, 15, 1425-1435.	0.9	41
28	Exploring the functions of RNA interference pathway proteins: some functions are more RISCy than others?. Biochemical Journal, 2005, 387, 561-571.	1.7	41
29	Glycomic analysis of host response reveals high mannose as a key mediator of influenza severity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26926-26935.	3.3	39
30	The nucleolar helicase DDX56 redistributes to West Nile virus assembly sites. Virology, 2017, 500, 169-177.	1.1	35
31	The Rubella Virus Capsid Protein Inhibits Mitochondrial Import. Journal of Virology, 2010, 84, 119-130.	1.5	34
32	Rubella virus capsid protein structure and its role in virus assembly and infection. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 20105-20110.	3.3	34
33	The Rubella Virus Capsid Is an Anti-Apoptotic Protein that Attenuates the Pore-Forming Ability of Bax. PLoS Pathogens, 2011, 7, e1001291.	2.1	33
34	Interactions between the West Nile virus capsid protein and the host cell-encoded phosphatase inhibitor, I ₂ ^{PP2A} . Cellular Microbiology, 2007, 9, 2756-2766.	1.1	31
35	Rubella Virus E2 Signal Peptide Is Required for Perinuclear Localization of Capsid Protein and Virus Assembly. Journal of Virology, 2001, 75, 1978-1983.	1.5	28
36	Peroxisomes exhibit compromised structure and matrix protein content in SARS-CoV-2-infected cells. Molecular Biology of the Cell, 2021, 32, 1273-1282.	0.9	26

Τοм C Ηοβμαν

#	Article	IF	CITATIONS
37	HCV and flaviviruses hijack cellular mechanisms for nuclear STAT2 degradation: Up-regulation of PDLIM2 suppresses the innate immune response. PLoS Pathogens, 2019, 15, e1007949.	2.1	24
38	Fibroblast Growth Factor 2 Enhances Zika Virus Infection in Human Fetal Brain. Journal of Infectious Diseases, 2019, 220, 1377-1387.	1.9	23
39	Functional analyses of phosphorylation events in human Argonaute 2. Rna, 2015, 21, 2030-2038.	1.6	22
40	Interplay between Zika Virus and Peroxisomes during Infection. Cells, 2019, 8, 725.	1.8	22
41	RNA Interference Effector Proteins Localize to Mobile Cytoplasmic Puncta in Schizosaccharomyces pombe. Traffic, 2006, 7, 1032-1044.	1.3	21
42	Analyses of Phosphorylation Events in the Rubella Virus Capsid Protein: Role in Early Replication Events. Journal of Virology, 2006, 80, 6917-6925.	1.5	21
43	Interactions between the RNA Interference Effector Protein Ago1 and 14-3-3 Proteins. Journal of Biological Chemistry, 2006, 281, 37646-37651.	1.6	19
44	Modulation of signaling pathways by RNA virus capsid proteins. Cellular Signalling, 2008, 20, 1227-1236.	1.7	19
45	The HIV-1 Accessory Protein Vpu Downregulates Peroxisome Biogenesis. MBio, 2020, 11, .	1.8	18
46	Expression of flavivirus capsids enhance the cellular environment for viral replication by activating Akt-signalling pathways. Virology, 2018, 516, 147-157.	1.1	17
47	Human pegivirusâ€l associated leukoencephalitis: Clinical and molecular features. Annals of Neurology, 2018, 84, 781-787.	2.8	15
48	Dual Catalytic Synthesis of Antiviral Compounds Based on Metallocarbene–Azide Cascade Chemistry. Journal of Organic Chemistry, 2018, 83, 6829-6842.	1.7	14
49	Regulation of RNA interference by Hsp90 is an evolutionarily conserved process. Biochimica Et Biophysica Acta - Molecular Cell Research, 2013, 1833, 2673-2681.	1.9	12
50	Rubella virus capsid protein: a small protein with big functions. Future Microbiology, 2010, 5, 571-584.	1.0	11
51	The Kinesin Motor Protein Cut7 Regulates Biogenesis and Function of Ago1â€Complexes. Traffic, 2010, 11, 25-36.	1.3	9
52	Phosphorylation and membrane association of the Rubella virus capsid protein is important for its anti-apoptotic function. Cellular Microbiology, 2014, 16, 1201-1210.	1.1	9
53	Targeted Elimination of Peroxisomes During Viral Infection: Lessons from HIV and Other Viruses. DNA and Cell Biology, 2018, 37, 417-421.	0.9	9
54	Nodosome Inhibition as a Novel Broad-Spectrum Antiviral Strategy against Arboviruses, Enteroviruses, and SARS-CoV-2. Antimicrobial Agents and Chemotherapy, 2021, 65, e0049121.	1.4	9

Τοм C Ηοβμαν

#	Article	IF	CITATIONS
55	RNA virus capsid proteins: more than just a shell. Future Virology, 2013, 8, 435-450.	0.9	8
56	Infection of Glia by Human Pegivirus Suppresses Peroxisomal and Antiviral Signaling Pathways. Journal of Virology, 2021, 95, e0107421.	1.5	7
57	Use of Primary Human Fetal Astrocytes and Tissue Explants as Ex Vivo Models to Study Zika Virus Infection of the Developing Brain. Methods in Molecular Biology, 2020, 2142, 251-259.	0.4	7
58	A Direct from Blood/Plasma Reverse Transcription–Polymerase Chain Reaction for Dengue Virus Detection in Point-of-Care Settings. American Journal of Tropical Medicine and Hygiene, 2019, 100, 1534-1540.	0.6	7
59	Flavivirus Capsid Proteins Inhibit the Interferon Response. Viruses, 2022, 14, 968.	1.5	6
60	The Karyopherin Sal3 is Required for Nuclear Import ofÂthe Core <scp>RNA</scp> Interference Pathway Protein <scp>Rdp</scp> 1. Traffic, 2012, 13, 520-531.	1.3	4
61	Zika Virus and Host Interactions: From the Bench to the Bedside and Beyond. Cells, 2020, 9, 2463.	1.8	4
62	Mayaro Virus Non-Structural Protein 2 Circumvents the Induction of Interferon in Part by Depleting Host Transcription Initiation Factor IIE Subunit 2. Cells, 2021, 10, 3510.	1.8	4
63	Structure-based screening and validation of potential dengue virus inhibitors through classical and QM/MM affinity estimation. Journal of Molecular Graphics and Modelling, 2019, 90, 128-143.	1.3	3
64	Editorial overview: Viruses and RNA interference. Current Opinion in Virology, 2014, 7, vii-x.	2.6	0