
Subiao Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/514505/publications.pdf Version: 2024-02-01

SURIAGEU

#	Article	IF	CITATIONS
1	Directionally maximizing CO selectivity to near-unity over cupric oxide with indium species for electrochemical CO2 reduction. Chemical Engineering Journal, 2022, 427, 131654.	6.6	18
2	Interfaceâ€Induced Electrocatalytic Enhancement of CO ₂ â€toâ€Formate Conversion on Heterostructured Bismuthâ€Based Catalysts. Small, 2022, 18, e2105682.	5.2	53
3	Tuning the subsurface oxygen of Ag2O-derived Ag nanoparticles to achieve efficient CO2 electroreduction to CO. Electrochimica Acta, 2022, 403, 139656.	2.6	4
4	In-situ generated hydroxides realize near-unity CO selectivity for electrochemical CO2 reduction. Chemical Engineering Journal, 2022, 433, 133785.	6.6	9
5	Carbon Dioxide Valorization via Formate Electrosynthesis in a Wide Potential Window. Advanced Functional Materials, 2022, 32, .	7.8	37
6	Advances on Nickel-Based Electrode Materials for Secondary Battery Systems: A Review. ACS Applied Energy Materials, 2022, 5, 9189-9213.	2.5	9
7	Hierarchically assembling cobalt/nickel carbonate hydroxide on copper nitride nanowires for highly efficient water splitting. Applied Catalysis B: Environmental, 2021, 292, 120148.	10.8	62
8	Unlocking the high redox activity of MoS2 on dual-doped graphene as a superior piezocatalyst. Nano Energy, 2020, 68, 104366.	8.2	60
9	Unraveling Structure Sensitivity in CO ₂ Electroreduction to Near-Unity CO on Silver Nanocubes. ACS Catalysis, 2020, 10, 3158-3163.	5.5	80
10	A High-Performance Ruddlesden–Popper Perovskite for Bifunctional Oxygen Electrocatalysis. ACS Catalysis, 2020, 10, 13437-13444.	5.5	39
11	Realizing the Intrinsic Electrochemical Activity of Acidic Nâ€Doped Graphene through 1â€Pyrenesulfonic Acid Bridges. Advanced Functional Materials, 2020, 30, 2001237.	7.8	2
12	Hexagonal Zn Nanoplates Enclosed by Zn(100) and Zn(002) Facets for Highly Selective CO ₂ Electroreduction to CO. ACS Applied Materials & Interfaces, 2020, 12, 31431-31438.	4.0	51
13	Bi∢sub>2O ₃ Nanosheets Grown on Multi hannel Carbon Matrix to Catalyze Efficient CO ₂ Electroreduction to HCOOH. Angewandte Chemie - International Edition, 2019, 58, 13828-13833.	7.2	254
14	Bi ₂ O ₃ Nanosheets Grown on Multi hannel Carbon Matrix to Catalyze Efficient CO ₂ Electroreduction to HCOOH. Angewandte Chemie, 2019, 131, 13966-13971.	1.6	45
15	Revelation of the Nature of the Ligand–PbS Bond and Its Implication on Chemical Functionalization of PbS. Journal of Physical Chemistry C, 2019, 123, 22981-22988.	1.5	2
16	Steering hydrogen evolution in CO2 electroreduction through tailoring various co-catalysts. Electrochemistry Communications, 2019, 107, 106531.	2.3	8
17	Achieving Efficient CO ₂ Electrochemical Reduction on Tunable In(OH) ₃ -Coupled Cu ₂ O-Derived Hybrid Catalysts. ACS Applied Materials & Interfaces, 2019, 11, 22346-22351.	4.0	28
18	Efficient Electrochemical Reduction of CO ₂ to HCOOH over Subâ€2â€nm SnO ₂ Quantum Wires with Exposed Grain Boundaries. Angewandte Chemie, 2019, 131, 8587-8591.	1.6	38

Subiao Liu

#	Article	IF	CITATIONS
19	Efficient Electrochemical Reduction of CO ₂ to HCOOH over Subâ€2â€nm SnO ₂ Quantum Wires with Exposed Grain Boundaries. Angewandte Chemie - International Edition, 2019, 58, 8499-8503.	7.2	322
20	Insights into the Interfacial Process in Electroless Ni–P Coating on Supercritical CO ₂ Transport Pipeline as Relevant to Carbon Capture and Storage. ACS Applied Materials & Interfaces, 2019, 11, 16243-16251.	4.0	27
21	Rational Design of Silver Sulfide Nanowires for Efficient CO ₂ Electroreduction in Ionic Liquid. ACS Catalysis, 2018, 8, 1469-1475.	5.5	76
22	Ultrathin 5-fold twinned sub-25 nm silver nanowires enable highly selective electroreduction of CO2 to CO. Nano Energy, 2018, 45, 456-462.	8.2	115
23	Descriptor of catalytic activity of metal sulfides for oxygen reduction reaction: a potential indicator for mineral flotation. Journal of Materials Chemistry A, 2018, 6, 9650-9656.	5.2	41
24	Effect of water content on the corrosion behavior of X65 pipeline steel in supercritical CO 2 -H 2 O-O 2 -H 2 S-SO 2 environment as relevant to CCS application. Corrosion Science, 2018, 137, 151-162.	3.0	34
25	Cogeneration of ethylene and energy in protonic fuel cell with an efficient and stable anode anchored with in-situ exsolved functional metal nanoparticles. Applied Catalysis B: Environmental, 2018, 220, 283-289.	10.8	60
26	Shape-Dependent Electrocatalytic Reduction of CO ₂ to CO on Triangular Silver Nanoplates. Journal of the American Chemical Society, 2017, 139, 2160-2163.	6.6	551
27	The excellence of La(Sr)Fe(Ni)O ₃ as an active and efficient cathode for direct CO ₂ electrochemical reduction at elevated temperatures. Journal of Materials Chemistry A, 2017, 5, 2673-2680.	5.2	78
28	Atomically dispersed Pt on specific TiO2 facets for photocatalytic H2 evolution. Journal of Catalysis, 2017, 353, 250-255.	3.1	105
29	Structure-engineered electrocatalyst enables highly active and stable oxygen evolution reaction over layered perovskite LaSr3Co1.5Fe1.5O10-δ. Nano Energy, 2017, 40, 115-121.	8.2	67
30	Highly Stable and Efficient Catalyst with In Situ Exsolved Fe–Ni Alloy Nanospheres Socketed on an Oxygen Deficient Perovskite for Direct CO ₂ Electrolysis. ACS Catalysis, 2016, 6, 6219-6228.	5.5	206
31	CO ₂ -to-CO conversion on layered perovskite with in situ exsolved Co–Fe alloy nanoparticles: an active and stable cathode for solid oxide electrolysis cells. Journal of Materials Chemistry A, 2016, 4, 17521-17528.	5.2	106
32	A comparative study of oxide scales grown on stainless steel and nickel-based superalloys in ultra-high temperature supercritical water at 800 ŰC. Corrosion Science, 2016, 106, 188-207.	3.0	121
33	Double-Layered Perovskite Anode with <i>in Situ</i> Exsolution of a Co–Fe Alloy To Cogenerate Ethylene and Electricity in a Proton-Conducting Ethane Fuel Cell. ACS Catalysis, 2016, 6, 760-768.	5.5	95