Ji Shi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5144766/publications.pdf

Version: 2024-02-01

		687363	839539
19	520	13	18
papers	citations	h-index	g-index
1.0	1.0	1.0	470
19	19	19	478
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Economically Competitive Biodegradable PBAT/Lignin Composites: Effect of Lignin Methylation and Compatibilizer. ACS Sustainable Chemistry and Engineering, 2020, 8, 5338-5346.	6.7	113
2	Tunable, UV-shielding and biodegradable composites based on well-characterized lignins and poly(butylene adipate- <i>co</i> -terephthalate). Green Chemistry, 2020, 22, 8623-8632.	9.0	59
3	Structural elucidation of lignin macromolecule from abaca during alkaline hydrogen peroxide delignification. International Journal of Biological Macromolecules, 2020, 144, 596-602.	7.5	51
4	Selective precipitation and characterization of lignin–carbohydrate complexes (LCCs) from Eucalyptus. Planta, 2018, 247, 1077-1087.	3.2	39
5	Design of a Superhydrophobic Strain Sensor with a Multilayer Structure for Human Motion Monitoring. ACS Applied Materials & Samp; Interfaces, 2022, 14, 1874-1884.	8.0	37
6	Insights into the Structural Changes and Potentials of Lignin from Bagasse during the Integrated Delignification Process. ACS Sustainable Chemistry and Engineering, 2019, 7, 13886-13897.	6.7	32
7	Effect of various pretreatments on improving cellulose enzymatic digestibility of tobacco stalk and the structural features of co-produced hemicelluloses. Bioresource Technology, 2020, 297, 122471.	9.6	30
8	Modified TiO2 particles for heterogeneous photocatalysis under solar irradiation. Materials Letters, 2020, 279, 128472.	2.6	25
9	Synthesis and characterization of waterborne polyurethane/polyhedral oligomeric silsesquioxane composites with low dielectric constants. Polymers for Advanced Technologies, 2019, 30, 2313-2320.	3.2	20
10	Chemosynthesis, characterization and application of lignin-based ï¬,occulants with tunable performance prepared by short-wavelength ultraviolet initiation. Industrial Crops and Products, 2020, 157, 112897.	5.2	20
11	Efficient and Product-Controlled Depolymerization of Lignin Oriented by Raney Ni Cooperated with Cs x H3 \hat{a}^2 x PW12O40. Bioenergy Research, 2017, 10, 1155-1162.	3.9	16
12	Structural Features of Alkaline Dioxane Lignin and Residual Lignin from <i>Eucalyptus grandis \tilde{A}— E. urophylla</i> . Journal of Agricultural and Food Chemistry, 2019, 67, 968-974.	5.2	16
13	Structural Transformations of Hybrid <i>Pennisetum</i> Lignin: Effect of Microwave-Assisted Hydrothermal Pretreatment. ACS Sustainable Chemistry and Engineering, 2019, 7, 3073-3082.	6.7	15
14	Revealing the Topochemistry and Structural Features of Lignin during the Growth of <i>Eucalyptus grandis </i> \tilde{A} — <i>Eucalyptus urophylla </i> ACS Sustainable Chemistry and Engineering, 2018, 6, 9198-9207.	6.7	13
15	Migration Prediction Model of Residual Contaminants from Food Packaging Paper and its Experimental Verification. Packaging Technology and Science, 2013, 26, 59-69.	2.8	9
16	Upgrading Traditional Pulp Mill into Biorefinery Platform: Wheat Straw as a Feedstock. ACS Sustainable Chemistry and Engineering, 2018, 6, 15284-15291.	6.7	9
17	Anti-algal activity of a fluorine-doped titanium oxide photocatalyst against <i>Microcystis aeruginosa</i> and its photocatalytic degradation. New Journal of Chemistry, 2021, 45, 17483-17492.	2.8	8
18	Facile Fabrication of Durable Biochar/H ₂ -TiO ₂ for Highly Efficient Solar-Driven Degradation of Enrofloxacin: Properties, Degradation Pathways, and Mechanism. ACS Omega, 2022, 7, 12158-12170.	3.5	8