Thai Nguyen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5144461/publications.pdf

Version: 2024-02-01

361045 414034 1,100 43 20 32 citations h-index g-index papers 44 44 44 653 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A study of delamination on graphite/epoxy composites in abrasive waterjet machining. Composites Part A: Applied Science and Manufacturing, 2008, 39, 923-929.	3.8	198
2	Grinding-hardening with liquid nitrogen: Mechanisms and technology. International Journal of Machine Tools and Manufacture, 2007, 47, 97-106.	6.2	84
3	An assessment of the applicability of cold air and oil mist in surface grinding. Journal of Materials Processing Technology, 2003, 140, 224-230.	3.1	70
4	Performance of a new segmented grinding wheel system. International Journal of Machine Tools and Manufacture, 2009, 49, 291-296.	6.2	63
5	Effect of temperature and stress on plastic deformation in monocrystalline silicon induced by scratching. Applied Physics Letters, 2005, 86, 011922.	1.5	51
6	Grinding–hardening using dry air and liquid nitrogen: Prediction and verification of temperature fields and hardened layer thickness. International Journal of Machine Tools and Manufacture, 2010, 50, 901-910.	6.2	51
7	Effect of liquid properties on the stability of an abrasive waterjet. International Journal of Machine Tools and Manufacture, 2008, 48, 1138-1147.	6.2	45
8	Modelling of the micro-channelling process on glasses using an abrasive slurry jet. International Journal of Machine Tools and Manufacture, 2012, 53, 118-126.	6.2	44
9	The wear mechanisms of reaction bonded silicon carbide under abrasive polishing and slurry jet impact conditions. Wear, 2018, 410-411, 156-164.	1.5	35
10	Realisation of grinding-hardening in workpieces of curved surfacesâ€"Part 1: Plunge cylindrical grinding. International Journal of Machine Tools and Manufacture, 2011, 51, 309-319.	6.2	30
11	Polishing of polycrystalline diamond by the technique of dynamic friction—Part 5: Quantitative analysis of material removal. International Journal of Machine Tools and Manufacture, 2009, 49, 515-520.	6.2	28
12	A study of the micro-hole geometry evolution on glass by abrasive air-jet micromachining. Journal of Manufacturing Processes, 2018, 31, 156-161.	2.8	28
13	Effect of grinding-induced cyclic heating on the hardened layer generation in the plunge grinding of a cylindrical component. International Journal of Machine Tools and Manufacture, 2015, 89, 55-63.	6.2	27
14	Mechanisms of microhole formation on glasses by an abrasive slurry jet. Journal of Applied Physics, 2009, 105, 044906.	1.1	26
15	Mechanisms of channel formation on glasses by abrasive waterjet milling. Wear, 2012, 292-293, 1-10.	1.5	25
16	A STUDY OF MICRO-CHANNELING ON GLASSES USING AN ABRASIVE SLURRY JET. Machining Science and Technology, 2012, 16, 547-563.	1.4	24
17	The coolant penetration in grinding with segmented wheelsâ€"part 1: mechanism and comparison with conventional wheels. International Journal of Machine Tools and Manufacture, 2005, 45, 1412-1420.	6.2	23
18	Modelling of the mist formation in a segmented grinding wheel system. International Journal of Machine Tools and Manufacture, 2005, 45, 21-28.	6.2	22

#	Article	IF	Citations
19	Characterizing the Mechanical Properties of the Hardened Layer Induced by Grinding-Hardening. Machining Science and Technology, 2014, 18, 277-298.	1.4	22
20	Process models for controlled-depth abrasive waterjet milling of amorphous glasses. International Journal of Advanced Manufacturing Technology, 2015, 77, 1177-1189.	1.5	22
21	Machining of Micro-Channels on Brittle Glass Using an Abrasive Slurry Jet. Key Engineering Materials, 0, 443, 639-644.	0.4	21
22	A review on the erosion mechanisms in abrasive waterjet micromachining of brittle materials. International Journal of Extreme Manufacturing, 2019, 1, 012006.	6.3	21
23	The coolant penetration in grinding with a segmented wheelâ€"Part 2: Quantitative analysis. International Journal of Machine Tools and Manufacture, 2006, 46, 114-121.	6.2	20
24	Mechanisms of enhancing the machining performance in micro abrasive waterjet drilling of hard and brittle materials by vibration assistance. International Journal of Machine Tools and Manufacture, 2020, 151, 103528.	6.2	19
25	A Preliminary Study of the Erosion Process in Micro-Machining of Glasses with a Low Pressure Slurry Jet. Key Engineering Materials, 0, 389-390, 375-380.	0.4	12
26	Cooling by sub-zero cold air jet in the grinding of a cylindrical component. International Journal of Advanced Manufacturing Technology, 2014, 73, 341-352.	1.5	12
27	Temperature Fields in Workpieces during Grinding-Hardening with Dry Air and Liquid Nitrogen as the Cooling Media. Advanced Materials Research, 2009, 76-78, 3-8.	0.3	10
28	Mechanisms and predictive models for the erosion process of super hard and brittle materials by a vibration-assisted slurry jet. International Journal of Mechanical Sciences, 2021, 211, 106794.	3.6	10
29	Understanding the Temperature Field in Plunge Cylindrical Grinding for Grinding-Hardening. Key Engineering Materials, 2010, 443, 388-393.	0.4	9
30	An Investigation of the Grinding-Hardening Induced by Traverse Cylindrical Grinding. Journal of Manufacturing Science and Engineering, Transactions of the ASME, 2014, 136, .	1.3	9
31	An investigation of surface roughness in micro-end-milling of metals. Australian Journal of Mechanical Engineering, 2017, 15, 166-174.	1.5	9
32	Color image enhancement using correlated intensity and saturation adjustments. Journal of Modern Optics, 2015, 62, 1037-1047.	0.6	8
33	Prediction of the Hardened Layer in Traverse Cylindrical Grinding-Hardening. Materials Science Forum, 2011, 697-698, 13-18.	0.3	5
34	A Study of Cavitation Induced Surface Erosion in Abrasive Waterjet Cutting Systems. Advanced Materials Research, 0, 53-54, 357-362.	0.3	3
35	Heat Transfer in Grinding-Hardening of a Cylindrical Component. Advanced Materials Research, 2011, 325, 35-41.	0.3	3
36	Mechanisms of pop-up delamination in laminated composites pierced by the initial pure waterjet in abrasive waterjet machining. Composite Structures, 2022, 297, 115968.	3.1	3

Thai Nguyen

#	Article	IF	Citations
37	A Note on Two Cooling Methods in Surface Grinding. Advanced Materials Research, 0, 328-330, 5-8.	0.3	2
38	Strip formation mechanisms and characteristics models in 3D printing of viscous polymer inks. Journal of Manufacturing Processes, 2021, 69, 331-339.	2.8	2
39	Modelling the Polishing Efficiency of Polycrystalline Diamond Composites by the Dynamic Friction Method. Key Engineering Materials, 0, 407-408, 436-439.	0.4	1
40	On the Profile and Microstructure Variations of Grinding-Induced Hardening Layer in A Cylindrical Workpiece. Advanced Materials Research, 2014, 1017, 3-8.	0.3	1
41	Effect of Cyclic Heating on the Hardened Layer Properties Generated by Plunge Cylindrical Grinding. Advanced Materials Research, 0, 1017, 539-543.	0.3	1
42	Predictive models for the geometrical characteristics of channels milled by abrasive waterjet. , 2015, , .		1
43	A New Grinding-Hardening Technology Using an Inert Cryogen(Grinding technology). Proceedings of International Conference on Leading Edge Manufacturing in 21st Century LEM21, 2005, 2005.2, 647-652.	0.0	0