Jose R Couceiro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5144331/publications.pdf

Version: 2024-02-01

471509 794594 1,333 21 17 19 citations h-index g-index papers 21 21 21 2350 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Gain of function of mutant p53 by coaggregation with multiple tumor suppressors. Nature Chemical Biology, 2011, 7, 285-295.	8.0	450
2	Transition metal catalysis in the mitochondria of living cells. Nature Communications, 2016, 7, 12538.	12.8	171
3	Rutheniumâ€Catalyzed Azide–Thioalkyne Cycloadditions in Aqueous Media: A Mild, Orthogonal, and Biocompatible Chemical Ligation. Angewandte Chemie - International Edition, 2017, 56, 10766-10770.	13.8	99
4	Intracellular Deprotection Reactions Mediated by Palladium Complexes Equipped with Designed Phosphine Ligands. ACS Catalysis, 2018, 8, 6055-6061.	11,2	78
5	Hollow nanoreactors for Pd-catalyzed Suzuki–Miyaura coupling and <i>O</i> -propargyl cleavage reactions in bio-relevant aqueous media. Chemical Science, 2019, 10, 2598-2603.	7.4	77
6	Coronin 1A promotes a cytoskeletal-based feedback loop that facilitates Rac1 translocation and activation. EMBO Journal, 2011, 30, 3913-3927.	7.8	69
7	De novo design of a biologically active amyloid. Science, 2016, 354, .	12.6	63
8	Anion Recognition as a Supramolecular Switch of Cell Internalization. Journal of the American Chemical Society, 2017, 139, 55-58.	13.7	44
9	The C-Terminal SH3 Domain Contributes to the Intramolecular Inhibition of Vav Family Proteins. Science Signaling, 2014, 7, ra35.	3.6	41
10	Remote Activation of Hollow Nanoreactors for Heterogeneous Photocatalysis in Biorelevant Media. Nano Letters, 2020, 20, 7068-7076.	9.1	34
11	Ruthenium atalyzed Azide–Thioalkyne Cycloadditions in Aqueous Media: A Mild, Orthogonal, and Biocompatible Chemical Ligation. Angewandte Chemie, 2017, 129, 10906-10910.	2.0	32
12	α-Galactosidase Aggregation Is a Determinant of Pharmacological Chaperone Efficacy on Fabry Disease Mutants. Journal of Biological Chemistry, 2012, 287, 28386-28397.	3.4	31
13	The AT-Hook motif as a versatile minor groove anchor for promoting DNA binding of transcription factor fragments. Chemical Science, 2015, 6, 4767-4771.	7.4	29
14	Bioorthogonal Azide–Thioalkyne Cycloaddition Catalyzed by Photoactivatable Ruthenium(II) Complexes. Angewandte Chemie - International Edition, 2021, 60, 16059-16066.	13.8	27
15	Ruthenation of Nonâ€stacked Guanines in DNA Gâ€Quadruplex Structures: Enhancement of <i>câ€MYC</i> Expression. Angewandte Chemie - International Edition, 2016, 55, 15615-15618.	13.8	23
16	Phylogenetic conservation of the regulatory and functional properties of the Vav oncoprotein family. Experimental Cell Research, 2005, 308, 364-380.	2.6	22
17	Sequence-dependent Internalization of Aggregating Peptides. Journal of Biological Chemistry, 2015, 290, 242-258.	3.4	22
18	Expression of VAV1 in the tumour microenvironment of glioblastoma multiforme. Journal of Neuro-Oncology, 2012, 110, 69-77.	2.9	12

#	Article	IF	CITATIONS
19	From Binding-Induced Dynamic Effects in SH3 Structures to Evolutionary Conserved Sectors. PLoS Computational Biology, 2016, 12, e1004938.	3.2	5
20	Vav3. The AFCS-nature Molecule Pages, 0, , .	0.2	4
21	Bioorthogonal Azide–Thioalkyne Cycloaddition Catalyzed by Photoactivatable Ruthenium(II) Complexes. Angewandte Chemie, 2021, 133, 16195-16202.	2.0	0