List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5144239/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Coronavirus Main Proteinase (3CLpro) Structure: Basis for Design of Anti-SARS Drugs. Science, 2003, 300, 1763-1767.	12.6	1,514
2	Unique and Conserved Features of Genome and Proteome of SARS-coronavirus, an Early Split-off From the Coronavirus Group 2 Lineage. Journal of Molecular Biology, 2003, 331, 991-1004.	4.2	1,092
3	Commentary: Middle East Respiratory Syndrome Coronavirus (MERS-CoV): Announcement of the Coronavirus Study Group. Journal of Virology, 2013, 87, 7790-7792.	3.4	1,012
4	Virus-encoded proteinases and proteolytic processing in the Nidovirales. Journal of General Virology, 2000, 81, 853-879.	2.9	855
5	Mechanisms and enzymes involved in SARS coronavirus genome expression. Journal of General Virology, 2003, 84, 2305-2315.	2.9	767
6	Nidovirales: Evolving the largest RNA virus genome. Virus Research, 2006, 117, 17-37.	2.2	757
7	Design of Wide-Spectrum Inhibitors Targeting Coronavirus Main Proteases. PLoS Biology, 2005, 3, e324.	5.6	547
8	Structure of coronavirus main proteinase reveals combination of a chymotrypsin fold with an extra alpha-helical domain. EMBO Journal, 2002, 21, 3213-3224.	7.8	538
9	Discovery of an RNA virus 3′→5′ exoribonuclease that is critically involved in coronavirus RNA synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 5108-5113.	7.1	524
10	Multilevel proteomics reveals host perturbations by SARS-CoV-2 and SARS-CoV. Nature, 2021, 594, 246-252.	27.8	475
11	Conservation of substrate specificities among coronavirus main proteases. Journal of General Virology, 2002, 83, 595-599.	2.9	256
12	Major genetic marker of nidoviruses encodes a replicative endoribonuclease. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 12694-12699.	7.1	254
13	SARS-CoV-2 Variants of Interest and Concern naming scheme conducive for global discourse. Nature Microbiology, 2021, 6, 821-823.	13.3	221
14	Molecular biology of severe acute respiratory syndrome coronavirus. Current Opinion in Microbiology, 2004, 7, 412-419.	5.1	192
15	Early endonuclease-mediated evasion of RNA sensing ensures efficient coronavirus replication. PLoS Pathogens, 2017, 13, e1006195.	4.7	184
16	Direct RNA nanopore sequencing of full-length coronavirus genomes provides novel insights into structural variants and enables modification analysis. Genome Research, 2019, 29, 1545-1554.	5.5	178
17	Crystal structure and mechanistic determinants of SARS coronavirus nonstructural protein 15 define an endoribonuclease family. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11892-11897.	7.1	161
18	Broad-spectrum antiviral activity of the eIF4A inhibitor silvestrol against corona- and picornaviruses. Antiviral Research, 2018, 150, 123-129.	4.1	160

#	Article	IF	CITATIONS
19	ADP-Ribose-1"-Monophosphatase: a Conserved Coronavirus Enzyme That Is Dispensable for Viral Replication in Tissue Culture. Journal of Virology, 2005, 79, 12721-12731.	3.4	142
20	The human coronavirus 229E superfamily 1 helicase has RNA and DNA duplex-unwinding activities with 5′-to-3′ polarity. Rna, 2000, 6, 1056-1068.	3.5	134
21	The Autocatalytic Release of a Putative RNA Virus Transcription Factor from Its Polyprotein Precursor Involves Two Paralogous Papain-like Proteases That Cleave the Same Peptide Bond. Journal of Biological Chemistry, 2001, 276, 33220-33232.	3.4	131
22	Inhibition of Cytosolic Phospholipase A ₂ α Impairs an Early Step of Coronavirus Replication in Cell Culture. Journal of Virology, 2018, 92, .	3.4	107
23	An Insect Nidovirus Emerging from a Primary Tropical Rainforest. MBio, 2011, 2, e00077-11.	4.1	100
24	Mesoniviridae: a proposed new family in the order Nidovirales formed by a single species of mosquito-borne viruses. Archives of Virology, 2012, 157, 1623-1628.	2.1	98
25	Biochemical Characterization of Arterivirus Nonstructural Protein 11 Reveals the Nidovirus-Wide Conservation of a Replicative Endoribonuclease. Journal of Virology, 2009, 83, 5671-5682.	3.4	93
26	Coronavirus replication–transcription complex: Vital and selective NMPylation of a conserved site in nsp9 by the NiRAN-RdRp subunit. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	90
27	Processing of the Human Coronavirus 229E Replicase Polyproteins by the Virus-Encoded 3C-Like Proteinase: Identification of Proteolytic Products and Cleavage Sites Common to pp1a and pp1ab. Journal of Virology, 1999, 73, 177-185.	3.4	90
28	The NF-κB-dependent and -independent transcriptome and chromatin landscapes of human coronavirus 229E-infected cells. PLoS Pathogens, 2017, 13, e1006286.	4.7	89
29	The ADP-ribose-1″-monophosphatase domains of severe acute respiratory syndrome coronavirus and human coronavirus 229E mediate resistance to antiviral interferon responses. Journal of General Virology, 2011, 92, 1899-1905.	2.9	88
30	Biochemical Characterization of the Equine Arteritis Virus Helicase Suggests a Close Functional Relationship between Arterivirus and Coronavirus Helicases. Journal of Virology, 2000, 74, 9586-9593.	3.4	78
31	Rapid identification of coronavirus replicase inhibitors using a selectable replicon RNA. Journal of General Virology, 2004, 85, 1717-1725.	2.9	76
32	Mutational analysis of the active centre of coronavirus 3C-like proteases. Journal of General Virology, 2002, 83, 581-593.	2.9	68
33	Nidovirus ribonucleases: Structures and functions in viral replication. RNA Biology, 2011, 8, 295-304.	3.1	68
34	Identification and Characterization of Genetically Divergent Members of the Newly Established Family Mesoniviridae. Journal of Virology, 2013, 87, 6346-6358.	3.4	67
35	The 3C-Like Proteinase of an Invertebrate Nidovirus Links Coronavirus and Potyvirus Homologs. Journal of Virology, 2003, 77, 1415-1426.	3.4	64
36	Characterization of White Bream Virus Reveals a Novel Genetic Cluster of Nidoviruses. Journal of Virology, 2006, 80, 11598-11609.	3.4	60

#	Article	IF	CITATIONS
37	Influenza Virus-Induced Caspase-Dependent Enlargement of Nuclear Pores Promotes Nuclear Export of Viral Ribonucleoprotein Complexes. Journal of Virology, 2015, 89, 6009-6021.	3.4	57
38	Identification and Characterization of a Human Coronavirus 229E Nonstructural Protein 8-Associated RNA 3′-Terminal Adenylyltransferase Activity. Journal of Virology, 2019, 93, .	3.4	54
39	Multi-level inhibition of coronavirus replication by chemical ER stress. Nature Communications, 2021, 12, 5536.	12.8	54
40	In Silico Prediction and Experimental Confirmation of HA Residues Conferring Enhanced Human Receptor Specificity of H5N1 Influenza A Viruses. Scientific Reports, 2015, 5, 11434.	3.3	53
41	Human Coronavirus 229E Papain-Like Proteases Have Overlapping Specificities but Distinct Functions in Viral Replication. Journal of Virology, 2007, 81, 3922-3932.	3.4	51
42	Rational Design of Novel Highly Potent and Selective Phosphatidylinositol 4-Kinase IIIβ (PI4KB) Inhibitors as Broad-Spectrum Antiviral Agents and Tools for Chemical Biology. Journal of Medicinal Chemistry, 2017, 60, 100-118.	6.4	50
43	Structural and functional conservation of cis-acting RNA elements in coronavirus 5'-terminal genome regions. Virology, 2018, 517, 44-55.	2.4	46
44	RNA structure analysis of alphacoronavirus terminal genome regions. Virus Research, 2014, 194, 76-89.	2.2	45
45	Identification of protease and ADP-ribose 1″-monophosphatase activities associated with transmissible gastroenteritis virus non-structural protein 3. Journal of General Virology, 2006, 87, 651-656.	2.9	43
46	Conflicting and ambiguous names of overlapping ORFs in the SARS-CoV-2 genome: A homology-based resolution. Virology, 2021, 558, 145-151.	2.4	40
47	Comparison of broad-spectrum antiviral activities of the synthetic rocaglate CR-31-B (â^') and the eIF4A-inhibitor Silvestrol. Antiviral Research, 2020, 175, 104706.	4.1	36
48	Structureâ€Activity Relationships of Benzamides and Isoindolines Designed as SARSâ€CoV Protease Inhibitors Effective against SARSâ€CoVâ€2. ChemMedChem, 2021, 16, 340-354.	3.2	36
49	Inhibition of SARS-CoV-2 coronavirus proliferation by designer antisense-circRNAs. Nucleic Acids Research, 2021, 49, 12502-12516.	14.5	27
50	The rocaglate CR-31-B (â^') inhibits SARS-CoV-2 replication at non-cytotoxic, low nanomolar concentrations in vitro and ex vivo. Antiviral Research, 2021, 186, 105012.	4.1	26
51	Transcription attenuation-derived small RNA rnTrpL regulates tryptophan biosynthesis gene expression in trans. Nucleic Acids Research, 2019, 47, 6396-6410.	14.5	24
52	D, L-lysine acetylsalicylate + glycine Impairs Coronavirus Replication. Journal of Antivirals & Antiretrovirals, 2016, 08, .	0.1	21
53	Hallmarks of <i>Alpha-</i> and <i>Betacoronavirus</i> non-structural protein 7+8 complexes. Science Advances, 2021, 7, .	10.3	20
54	Characterization of Bafinivirus Main Protease Autoprocessing Activities. Journal of Virology, 2011, 85, 1348-1359.	3.4	19

#	Article	IF	CITATIONS
55	Antiviral activity of K22 against members of the order Nidovirales. Virus Research, 2018, 246, 28-34.	2.2	17
56	lmmunoglobulin deficiency as an indicator of disease severity in patients with COVID-19. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2021, 320, L590-L599.	2.9	17
57	Identification of specific residues in avian influenza A virus NS1 that enhance viral replication and pathogenicity in mammalian systems. Journal of General Virology, 2016, 97, 2135-2148.	2.9	17
58	Phylogenetic analysis of human influenza A/H3N2 viruses isolated in 2015 in Germany indicates significant genetic divergence from vaccine strains. Archives of Virology, 2016, 161, 1505-1515.	2.1	16
59	Call for Papers: The Pathophysiology of COVID-19 and SARS-CoV-2 Infection. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 318, L1016-L1019.	2.9	16
60	Targeting the DEAD-Box RNA Helicase elF4A with Rocaglates—A Pan-Antiviral Strategy for Minimizing the Impact of Future RNA Virus Pandemics. Microorganisms, 2021, 9, 540.	3.6	16
61	The PB1 segment of an influenza A virus H1N1 2009pdm isolate enhances the replication efficiency of specific influenza vaccine strains in cell culture and embryonated eggs. Journal of General Virology, 2016, 97, 620-631.	2.9	16
62	Characterization of an Alphamesonivirus 3C-Like Protease Defines a Special Group of Nidovirus Main Proteases. Journal of Virology, 2014, 88, 13747-13758.	3.4	13
63	Studies of nosocomial outbreaks of hepatitis B in nursing homes in Germany suggest a major role of hepatitis B e antigen expression in disease severity and progression. International Journal of Medical Microbiology, 2015, 305, 663-672.	3.6	12
64	Reverse Genetics for Type I Feline Coronavirus Field Isolate To Study the Molecular Pathogenesis of Feline Infectious Peritonitis. MBio, 2018, 9, .	4.1	12
65	IFITM3 Interacts with the HBV/HDV Receptor NTCP and Modulates Virus Entry and Infection. Viruses, 2022, 14, 727.	3.3	11
66	Coronavirus Replicative Proteins. , 2014, , 65-81.		10
67	Structural basis for catalysis and substrate specificity of a 3C-like cysteine protease from a mosquito mesonivirus. Virology, 2019, 533, 21-33.	2.4	10
68	Reprograming of sRNA target specificity by the leader peptide peTrpL in response to antibiotic exposure. Nucleic Acids Research, 2021, 49, 2894-2915.	14.5	9
69	Identification and characterization of a Golgi retention signal in feline coronavirus accessory protein 7b. Journal of General Virology, 2017, 98, 2017-2029.	2.9	8
70	Characterization of a bafinivirus exoribonuclease activity. Journal of General Virology, 2018, 99, 1253-1260.	2.9	8
71	Thapsigargin: key to new host-directed coronavirus antivirals?. Trends in Pharmacological Sciences, 2022, 43, 557-568.	8.7	8
72	Development and evaluation of reverse transcription loop-mediated isothermal amplification assay for the detection of the fathead minnow nidovirus. Journal of Virological Methods, 2014, 202, 39-45.	2.1	7

#	Article	IF	CITATIONS
73	Characterization of the 3rd International Standard for hepatitis B virus surface antigen (HBsAg). Journal of Clinical Virology, 2016, 82, 166-172.	3.1	7
74	Proteolytic processing of mesonivirus replicase polyproteins by the viral 3C-like protease. Journal of General Virology, 2016, 97, 1439-1445.	2.9	6
75	Rocaglates as Antivirals: Comparing the Effects on Viral Resistance, Anti-Coronaviral Activity, RNA-Clamping on eIF4A and Immune Cell Toxicity. Viruses, 2022, 14, 519.	3.3	4
76	A Single-Center Study of Viral Respiratory Tract Infections in Hospitalized Children From the Kurdistan Region of Iraq. Global Pediatric Health, 2018, 5, 2333794X1878499.	0.7	3
77	Characterization of monoclonal antibodies against feline coronavirus accessory protein 7b. Veterinary Microbiology, 2016, 184, 11-19.	1.9	2