
Michael J Hawrylycz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5144201/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cellular resolution anatomical and molecular atlases for prenatal human brains. Journal of Comparative Neurology, 2022, 530, 6-503.	1.6	14
2	Is Neuroscience FAIR? A Call for Collaborative Standardisation of Neuroscience Data. Neuroinformatics, 2022, 20, 507-512.	2.8	23
3	Petabyte-Scale Multi-Morphometry of Single Neurons for Whole Brains. Neuroinformatics, 2022, 20, 525-536.	2.8	14
4	Cross-modal coherent registration of whole mouse brains. Nature Methods, 2022, 19, 111-118.	19.0	36
5	Consistent cross-modal identification of cortical neurons with coupled autoencoders. Nature Computational Science, 2021, 1, 120-127.	8.0	29
6	A taxonomy of transcriptomic cell types across the isocortex and hippocampal formation. Cell, 2021, 184, 3222-3241.e26.	28.9	479
7	Single-cell and single-nucleus RNA-seq uncovers shared and distinct axes of variation in dorsal LGN neurons in mice, non-human primates, and humans. ELife, 2021, 10, .	6.0	41
8	A transcriptomic and epigenomic cell atlas of the mouse primary motor cortex. Nature, 2021, 598, 103-110.	27.8	166
9	Morphological diversity of single neurons in molecularly defined cell types. Nature, 2021, 598, 174-181.	27.8	180
10	Human neocortical expansion involves glutamatergic neuron diversification. Nature, 2021, 598, 151-158.	27.8	160
11	Comparative cellular analysis of motor cortex in human, marmoset and mouse. Nature, 2021, 598, 111-119.	27.8	361
12	A multimodal cell census and atlas of the mammalian primary motor cortex. Nature, 2021, 598, 86-102.	27.8	316
13	Cellular anatomy of the mouse primary motor cortex. Nature, 2021, 598, 159-166.	27.8	117
14	Transcriptional network orchestrating regional patterning of cortical progenitors. Proceedings of the United States of America, 2021, 118, .	7.1	25
15	New light on cortical neuropeptides and synaptic network plasticity. Current Opinion in Neurobiology, 2020, 63, 176-188.	4.2	26
16	A community-based transcriptomics classification and nomenclature of neocortical cell types. Nature Neuroscience, 2020, 23, 1456-1468.	14.8	183
17	Integrated Morphoelectric and Transcriptomic Classification of Cortical GABAergic Cells. Cell, 2020, 183, 935-953.e19.	28.9	290
18	The Allen Mouse Brain Common Coordinate Framework: A 3D Reference Atlas. Cell, 2020, 181, 936-953.e20.	28.9	597

MICHAEL J HAWRYLYCZ

#	Article	IF	CITATIONS
19	Common cell type nomenclature for the mammalian brain. ELife, 2020, 9, .	6.0	56
20	TeraVR empowers precise reconstruction of complete 3-D neuronal morphology in the whole brain. Nature Communications, 2019, 10, 3474.	12.8	64
21	Conserved cell types with divergent features in human versus mouse cortex. Nature, 2019, 573, 61-68.	27.8	1,198
22	Classification of electrophysiological and morphological neuron types in the mouse visual cortex. Nature Neuroscience, 2019, 22, 1182-1195.	14.8	333
23	Single-cell transcriptomic evidence for dense intracortical neuropeptide networks. ELife, 2019, 8, .	6.0	98
24	Integrative functional genomic analysis of human brain development and neuropsychiatric risks. Science, 2018, 362, .	12.6	516
25	Shared and distinct transcriptomic cell types across neocortical areas. Nature, 2018, 563, 72-78.	27.8	1,323
26	An anatomic transcriptional atlas of human glioblastoma. Science, 2018, 360, 660-663.	12.6	384
27	Automatic tracing of ultra-volumes of neuronal images. Nature Methods, 2017, 14, 332-333.	19.0	75
28	Transcriptomic Perspectives on Neocortical Structure, Development, Evolution, and Disease. Annual Review of Neuroscience, 2017, 40, 629-652.	10.7	85
29	A comprehensive transcriptional map of primate brain development. Nature, 2016, 535, 367-375.	27.8	341
30	Reconstructing the brain: from image stacks to neuron synthesis. Brain Informatics, 2016, 3, 205-209.	3.0	9
31	Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nature Neuroscience, 2016, 19, 335-346.	14.8	1,522
32	Cell-type-specific neuroanatomy of cliques of autism-related genes in the mouse brain. Frontiers in Computational Neuroscience, 2015, 9, 55.	2.1	3
33	BlastNeuron for Automated Comparison, Retrieval and Clustering of 3D Neuron Morphologies. Neuroinformatics, 2015, 13, 487-499.	2.8	55
34	Correlated gene expression supports synchronous activity in brain networks. Science, 2015, 348, 1241-1244.	12.6	532
35	Canonical genetic signatures of the adult human brain. Nature Neuroscience, 2015, 18, 1832-1844.	14.8	503
36	Neuroinformatics of the Allen Mouse Brain Connectivity Atlas. Methods, 2015, 73, 4-17.	3.8	176

MICHAEL J HAWRYLYCZ

#	Article	IF	CITATIONS
37	Exploration and visualization of connectivity in the adult mouse brain. Methods, 2015, 73, 90-97.	3.8	13
38	Spatial mapping of multi-modal data in neuroscience. Methods, 2015, 73, 1-3.	3.8	0
39	Mapping Social Behavior-Induced Brain Activation at Cellular Resolution in the Mouse. Cell Reports, 2015, 10, 292-305.	6.4	270
40	BigNeuron: Large-Scale 3D Neuron Reconstruction from Optical Microscopy Images. Neuron, 2015, 87, 252-256.	8.1	202
41	Visualizing the spatial gene expression organization in the brain through non-linear similarity embeddings. Methods, 2015, 73, 79-89.	3.8	54
42	A mesoscale connectome of the mouse brain. Nature, 2014, 508, 207-214.	27.8	2,143
43	The Allen Brain Atlas. , 2014, , 1111-1126.		18
44	Transcriptional landscape of the prenatal human brain. Nature, 2014, 508, 199-206.	27.8	1,147
45	Cell-type–based model explaining coexpression patterns of genes in the brain. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5397-5402.	7.1	66
46	Virtual finger boosts three-dimensional imaging and microsurgery as well as terabyte volume image visualization and analysis. Nature Communications, 2014, 5, 4342.	12.8	109
47	A High-Resolution Spatiotemporal Atlas of Gene Expression of the Developing Mouse Brain. Neuron, 2014, 83, 309-323.	8.1	246
48	Computational neuroanatomy and co-expression of genes in the adult mouse brain, analysis tools for the Allen Brain Atlas. Quantitative Biology, 2013, 1, 91-100.	0.5	9
49	Transcriptional Architecture of the Primate Neocortex. Neuron, 2012, 73, 1083-1099.	8.1	234
50	Large-Scale Cellular-Resolution Gene Profiling in Human Neocortex Reveals Species-Specific Molecular Signatures. Cell, 2012, 149, 483-496.	28.9	342
51	An anatomically comprehensive atlas of the adult human brain transcriptome. Nature, 2012, 489, 391-399.	27.8	2,321
52	Large-Scale Neuroinformatics for In Situ Hybridization Data in the Mouse Brain. International Review of Neurobiology, 2012, 104, 159-182.	2.0	9
53	Multi-scale correlation structure of gene expression in the brain. Neural Networks, 2011, 24, 933-942.	5.9	45
54	Digital Atlasing and Standardization in the Mouse Brain. PLoS Computational Biology, 2011, 7, e1001065.	3.2	109

MICHAEL J HAWRYLYCZ

#	Article	IF	CITATIONS
55	Areal and laminar differentiation in the mouse neocortex using large scale gene expression data. Methods, 2010, 50, 113-121.	3.8	38
56	A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nature Neuroscience, 2010, 13, 133-140.	14.8	5,650
57	Molecular and anatomical signatures of sleep deprivation in the mouse brain. Frontiers in Neuroscience, 2010, 4, 165.	2.8	90
58	Clustering of spatial gene expression patterns in the mouse brain and comparison with classical neuroanatomy. Methods, 2010, 50, 105-112.	3.8	70
59	Surface-based mapping of gene expression and probabilistic expression maps in the mouse cortex. Methods, 2010, 50, 55-62.	3.8	23
60	The INCF Digital Atlasing Program: Report on Digital Atlasing Standards in the Rodent Brain. Nature Precedings, 2009, , .	0.1	7
61	A Proposal for a Coordinated Effort for the Determination of Brainwide Neuroanatomical Connectivity in Model Organisms at a Mesoscopic Scale. PLoS Computational Biology, 2009, 5, e1000334.	3.2	242
62	An anatomic gene expression atlas of the adult mouse brain. Nature Neuroscience, 2009, 12, 356-362.	14.8	264
63	Exploration and visualization of gene expression with neuroanatomy in the adult mouse brain. BMC Bioinformatics, 2008, 9, 153.	2.6	87
64	Quantitative methods for genome-scale analysis of in situ hybridization and correlation with microarray data. Genome Biology, 2008, 9, R23.	9.6	29
65	Genomic Anatomy of the Hippocampus. Neuron, 2008, 60, 1010-1021.	8.1	337
66	Neuroinformatics for Genome-Wide 3-D Gene Expression Mapping in the Mouse Brain. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2007, 4, 382-393.	3.0	109
67	Workshop report: 1st INCF Workshop on Mouse and Rat Brain Digital Atlasing Systems. Nature Precedings, 2007, , .	0.1	1
68	Workshop report: 1st INCF Workshop on Mouse and Rat Brain Digital Atlasing Systems. Nature Precedings, 2007, , .	0.1	1
69	Genome-wide atlas of gene expression in the adult mouse brain. Nature, 2007, 445, 168-176.	27.8	4,863
70	NeuroBlast: a 3D spatial homology search tool for gene expression. BMC Neuroscience, 2007, 8, .	1.9	11
71	The Allen Brain Atlas: Delivering Neuroscience to the Web on a Genome Wide Scale. , 2007, , 17-26.		8