Yaping Ding

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/514419/publications.pdf

Version: 2024-02-01

361413 477307 1,310 33 20 29 h-index citations g-index papers 33 33 33 2299 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	High drug-loaded microspheres enabled by controlled in-droplet precipitation promote functional recovery after spinal cord injury. Nature Communications, 2022, 13, 1262.	12.8	39
2	Intracellular Delivery of Budesonide and Polydopamine Co‣oaded in Endosomolytic Poly(butyl) Tj ETQq0 0 0 rgE from M1 to M2. Advanced Therapeutics, 2021, 4, 2000058.	T /Overlo 3.2	ck 10 Tf 50 7 13
3	An organic-inorganic hybrid scaffold with honeycomb-like structures enabled by one-step self-assembly-driven electrospinning. Materials Science and Engineering C, 2021, 124, 112079.	7.3	9
4	A Virusâ€Mimicking pHâ€Responsive Acetalated Dextranâ€Based Membraneâ€Active Polymeric Nanoparticle for Intracellular Delivery of Antitumor Therapeutics. Advanced Functional Materials, 2019, 29, 1905352.	14.9	43
5	Antitumor Therapeutics: A Virusâ€Mimicking pHâ€Responsive Acetalated Dextranâ€Based Membraneâ€Active Polymeric Nanoparticle for Intracellular Delivery of Antitumor Therapeutics (Adv. Funct. Mater.) Tj ETQq1 1 0.7843	114.ggBT /	Overlock 1.0
6	Electrospun Fibrous Architectures for Drug Delivery, Tissue Engineering and Cancer Therapy. Advanced Functional Materials, 2019, 29, 1802852.	14.9	179
7	Electrospun Polyhydroxybutyrate/Poly(Îμ-caprolactone)/Sol–Gel-Derived Silica Hybrid Scaffolds with Drug Releasing Function for Bone Tissue Engineering Applications. ACS Applied Materials & Drug Releasing Function for Bone Tissue Engineering Applications. ACS Applied Materials & Drug Releasing Function for Bone Tissue Engineering Applications. ACS Applied Materials & Drug Releasing Function for Bone Tissue Engineering Applications. ACS Applied Materials & Drug Releasing Function for Bone Tissue Engineering Applications. ACS Applied Materials & Drug Releasing Function for Bone Tissue Engineering Applications. ACS Applied Materials & Drug Releasing Function for Bone Tissue Engineering Applications. ACS Applied Materials & Drug Releasing Function for Bone Tissue Engineering Applications. ACS Applied Materials & Drug Releasing Function for Bone Tissue Engineering Applications. ACS Applied Materials & Drug Releasing Function for Bone Tissue Engineering Applications. ACS Applied Materials & Drug Releasing Function for Bone Tissue Engineering Applications. ACS Applied Materials & Drug Releasing Function for Bone Tissue Engineering Function for Bone Tissue Function for Bone Tissue Engineering Function for Bone Tissue Function	8.0	65
8	Tailoring Porous Silicon for Biomedical Applications: From Drug Delivery to Cancer Immunotherapy. Advanced Materials, 2018, 30, e1703740.	21.0	127
9	Hierarchical structured and programmed vehicles deliver drugs locally to inflamed sites of intestine. Biomaterials, 2018, 185, 322-332.	11.4	73
10	Preparation and characterization of 45S5 bioactive glassâ€based scaffolds loaded with <scp>PHBV</scp> microspheres with daidzein release function. Journal of Biomedical Materials Research - Part A, 2017, 105, 1765-1774.	4.0	12
11	Multifunctional Nanotube–Mucoadhesive Poly(methyl vinyl etherâ€ <i>co</i> a€maleic) Tj ETQq1 1 0.784314 rg Delivery. Advanced Healthcare Materials, 2017, 6, 1700629.	BT /Overlo 7.6	ock 10 Tf 50 35
12	Facile preparation of multifunctional superparamagnetic PHBV microspheres containing SPIONs for biomedical applications. Scientific Reports, 2016, 6, 23140.	3.3	42
13	Electrospun Polyhydroxybutyrate/Poly(ε-caprolactone)/58S Sol–Gel Bioactive Glass Hybrid Scaffolds with Highly Improved Osteogenic Potential for Bone Tissue Engineering. ACS Applied Materials & Lamp; Interfaces, 2016, 8, 17098-17108.	8.0	97
14	Bioactive Glass-Biopolymer Composites for Applications in Tissue Engineering. , 2016, , 325-356.		7
15	Preparation and characterization of electrosprayed daidzein–loaded PHBV microspheres. Materials Letters, 2015, 158, 66-69.	2.6	26
16	Antibacterial 45S5 Bioglass $\hat{A}^{\text{@}}$ -based scaffolds reinforced with genipin cross-linked gelatin for bone tissue engineering. Journal of Materials Chemistry B, 2015, 3, 3367-3378.	5.8	57
17	Electrophoretic deposition of antibiotic loaded PHBV microsphere-alginate composite coating with controlled delivery potential. Colloids and Surfaces B: Biointerfaces, 2015, 130, 199-206.	5.0	38
18	The evaluation of physical properties and in vitro cell behavior of PHB/PCL/sol–gel derived silica hybrid scaffolds and PHB/PCL/fumed silica composite scaffolds. Colloids and Surfaces B: Biointerfaces, 2015, 136, 93-98.	5.0	28

#	Article	IF	Citations
19	Bioactive Glass-Biopolymer Composites. , 2015, , 1-26.		O
20	Multifunctional Chitosan-45S5 Bioactive Glass-Poly(3-hydroxybutyrate- <i>co</i> -3-hydroxyvalerate) Microsphere Composite Membranes for Guided Tissue/Bone Regeneration. ACS Applied Materials & Amp; Interfaces, 2015, 7, 20845-20854.	8.0	70
21	Bioactive Glass–Biopolymer Composites for Applications in Tissue Engineering. , 2015, , 1-26.		0
22	Bioactive Glass-Biopolymer Composites. , 2015, , 1-26.		0
23	Preparation and characterization of PHBV microsphere/45S5 bioactive glass composite scaffolds with vancomycin releasing function. Materials Science and Engineering C, 2014, 41, 320-328.	7.3	62
24	45S5 bioactive glass-based scaffolds coated with cellulose nanowhiskers for bone tissue engineering. RSC Advances, 2014, 4, 56156-56164.	3.6	39
25	Ultrasonic elasticity determination of 45S5 Bioglass \hat{A}^{\odot} -based scaffolds: Influence of polymer coating and crosslinking treatment. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 40, 85-94.	3.1	22
26	Fabrication of electrospun poly (3-hydroxybutyrate)/poly (ε-caprolactone)/silica hybrid fibermats with and without calcium addition. European Polymer Journal, 2014, 55, 222-234.	5.4	51
27	Activation energy for mullitization of gel fibres obtained from aluminum isopropoxide. Bulletin of Materials Science, 2012, 35, 833-837.	1.7	4
28	Mullite Fibers Prepared by Sol-Gel Method Using Aluminum Chloride Aluminum Isopropoxide and Tetraethylorthosilicate. Materials and Manufacturing Processes, 2011, 26, 649-653.	4.7	9
29	Synthesis and Characterization of Rich Silica Mullite Fibers by Sol–Gel Method Using Aluminum Lactate and Silica Sol. Advanced Composite Materials, 2011, 20, 477-486.	1.9	2
30	Mullite fibers prepared from an inorganic sol–gel precursor. Journal of Sol-Gel Science and Technology, 2010, 53, 378-383.	2.4	20
31	Mullite fibres preparation by aqueous sol–gel process and activation energy of mullitization. Journal of Alloys and Compounds, 2010, 492, 396-401.	5 . 5	42
32	Synthesis and characterization of polyvinyl butyral–Al(NO3)3 composite sol used for alumina based fibers. Journal of Sol-Gel Science and Technology, 2009, 49, 385-390.	2.4	18
33	Mullite fibres prepared by sol–gel method using polyvinyl butyral. Journal of the European Ceramic Society, 2009, 29, 1101-1107.	5.7	80