
Yaping Ding

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/514419/publications.pdf Version: 2024-02-01

YADING DING

#	Article	IF	CITATIONS
1	Electrospun Fibrous Architectures for Drug Delivery, Tissue Engineering and Cancer Therapy. Advanced Functional Materials, 2019, 29, 1802852.	14.9	179
2	Tailoring Porous Silicon for Biomedical Applications: From Drug Delivery to Cancer Immunotherapy. Advanced Materials, 2018, 30, e1703740.	21.0	127
3	Electrospun Polyhydroxybutyrate/Poly(ε-caprolactone)/58S Sol–Gel Bioactive Glass Hybrid Scaffolds with Highly Improved Osteogenic Potential for Bone Tissue Engineering. ACS Applied Materials & Interfaces, 2016, 8, 17098-17108.	8.0	97
4	Mullite fibres prepared by sol–gel method using polyvinyl butyral. Journal of the European Ceramic Society, 2009, 29, 1101-1107.	5.7	80
5	Hierarchical structured and programmed vehicles deliver drugs locally to inflamed sites of intestine. Biomaterials, 2018, 185, 322-332.	11.4	73
6	Multifunctional Chitosan-45S5 Bioactive Glass-Poly(3-hydroxybutyrate- <i>co</i> -3-hydroxyvalerate) Microsphere Composite Membranes for Guided Tissue/Bone Regeneration. ACS Applied Materials & Interfaces, 2015, 7, 20845-20854.	8.0	70
7	Electrospun Polyhydroxybutyrate/Poly(ε-caprolactone)/Sol–Gel-Derived Silica Hybrid Scaffolds with Drug Releasing Function for Bone Tissue Engineering Applications. ACS Applied Materials & Interfaces, 2018, 10, 14540-14548.	8.0	65
8	Preparation and characterization of PHBV microsphere/45S5 bioactive glass composite scaffolds with vancomycin releasing function. Materials Science and Engineering C, 2014, 41, 320-328.	7.3	62
9	Antibacterial 45S5 Bioglass®-based scaffolds reinforced with genipin cross-linked gelatin for bone tissue engineering. Journal of Materials Chemistry B, 2015, 3, 3367-3378.	5.8	57
10	Fabrication of electrospun poly (3-hydroxybutyrate)/poly (ε-caprolactone)/silica hybrid fibermats with and without calcium addition. European Polymer Journal, 2014, 55, 222-234.	5.4	51
11	A Virusâ€Mimicking pHâ€Responsive Acetalated Dextranâ€Based Membraneâ€Active Polymeric Nanoparticle for Intracellular Delivery of Antitumor Therapeutics. Advanced Functional Materials, 2019, 29, 1905352.	14.9	43
12	Mullite fibres preparation by aqueous sol–gel process and activation energy of mullitization. Journal of Alloys and Compounds, 2010, 492, 396-401.	5.5	42
13	Facile preparation of multifunctional superparamagnetic PHBV microspheres containing SPIONs for biomedical applications. Scientific Reports, 2016, 6, 23140.	3.3	42
14	45S5 bioactive glass-based scaffolds coated with cellulose nanowhiskers for bone tissue engineering. RSC Advances, 2014, 4, 56156-56164.	3.6	39
15	High drug-loaded microspheres enabled by controlled in-droplet precipitation promote functional recovery after spinal cord injury. Nature Communications, 2022, 13, 1262.	12.8	39
16	Electrophoretic deposition of antibiotic loaded PHBV microsphere-alginate composite coating with controlled delivery potential. Colloids and Surfaces B: Biointerfaces, 2015, 130, 199-206.	5.0	38
17	Multifunctional Nanotube–Mucoadhesive Poly(methyl vinyl etherâ€ <i>co</i> â€maleic) Tj ETQq1 1 0.784314 rg Delivery. Advanced Healthcare Materials, 2017, 6, 1700629.	BT /Overl 7.6	ock 10 Tf 5 35
18	The evaluation of physical properties and in vitro cell behavior of PHB/PCL/sol–gel derived silica hybrid scaffolds and PHB/PCL/fumed silica composite scaffolds. Colloids and Surfaces B: Biointerfaces, 2015, 136, 93-98.	5.0	28

YAPING DING

#	Article	IF	CITATIONS
19	Preparation and characterization of electrosprayed daidzein–loaded PHBV microspheres. Materials Letters, 2015, 158, 66-69.	2.6	26
20	Ultrasonic elasticity determination of 45S5 Bioglass ® -based scaffolds: Influence of polymer coating and crosslinking treatment. Journal of the Mechanical Behavior of Biomedical Materials, 2014, 40, 85-94.	3.1	22
21	Mullite fibers prepared from an inorganic sol–gel precursor. Journal of Sol-Gel Science and Technology, 2010, 53, 378-383.	2.4	20
22	Synthesis and characterization of polyvinyl butyral–Al(NO3)3 composite sol used for alumina based fibers. Journal of Sol-Gel Science and Technology, 2009, 49, 385-390.	2.4	18
23	Intracellular Delivery of Budesonide and Polydopamine Co‣oaded in Endosomolytic Poly(butyl) Tj ETQq1 1 0.784 from M1 to M2. Advanced Therapeutics, 2021, 4, 2000058.	4314 rgBT 3.2	Överlock 13
24	Preparation and characterization of 45S5 bioactive glassâ€based scaffolds loaded with <scp>PHBV</scp> microspheres with daidzein release function. Journal of Biomedical Materials Research - Part A, 2017, 105, 1765-1774.	4.0	12
25	Mullite Fibers Prepared by Sol-Gel Method Using Aluminum Chloride Aluminum Isopropoxide and Tetraethylorthosilicate. Materials and Manufacturing Processes, 2011, 26, 649-653.	4.7	9
26	An organic-inorganic hybrid scaffold with honeycomb-like structures enabled by one-step self-assembly-driven electrospinning. Materials Science and Engineering C, 2021, 124, 112079.	7.3	9
27	Bioactive Glass-Biopolymer Composites for Applications in Tissue Engineering. , 2016, , 325-356.		7
28	Activation energy for mullitization of gel fibres obtained from aluminum isopropoxide. Bulletin of Materials Science, 2012, 35, 833-837.	1.7	4
29	Synthesis and Characterization of Rich Silica Mullite Fibers by Sol–Gel Method Using Aluminum Lactate and Silica Sol. Advanced Composite Materials, 2011, 20, 477-486.	1.9	2
30	Antitumor Therapeutics: A Virusâ€Mimicking pHâ€Responsive Acetalated Dextranâ€Based Membraneâ€Active Polymeric Nanoparticle for Intracellular Delivery of Antitumor Therapeutics (Adv. Funct. Mater.) Tj ETQqO 0 0 rgBT	/ Dwe rlock	10 Tf 50 29

31	Bioactive Glass-Biopolymer Composites. , 2015, , 1-26.	0
32	Bioactive Glass–Biopolymer Composites for Applications in Tissue Engineering. , 2015, , 1-26.	0
33	Bioactive Glass-Biopolymer Composites. , 2015, , 1-26.	0