Martin Olazar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/5143663/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Thermochemical routes for the valorization of waste polyolefinic plastics to produce fuels and chemicals. A review. Renewable and Sustainable Energy Reviews, 2017, 73, 346-368.	8.2	557
2	Recent advances in the gasification of waste plastics. A critical overview. Renewable and Sustainable Energy Reviews, 2018, 82, 576-596.	8.2	506
3	Transformation of Oxygenate Components of Biomass Pyrolysis Oil on a HZSM-5 Zeolite. II. Aldehydes, Ketones, and Acids. Industrial & Engineering Chemistry Research, 2004, 43, 2619-2626.	1.8	363
4	Evaluation of thermochemical routes for hydrogen production from biomass: A review. Energy Conversion and Management, 2018, 165, 696-719.	4.4	341
5	Influence of temperature on biomass pyrolysis in a conical spouted bed reactor. Resources, Conservation and Recycling, 2012, 59, 23-31.	5.3	281
6	Bio-oil production from rice husk fast pyrolysis in a conical spouted bed reactor. Fuel, 2014, 128, 162-169.	3.4	263
7	Stable operation conditions for gas-solid contact regimes in conical spouted beds. Industrial & Engineering Chemistry Research, 1992, 31, 1784-1792.	1.8	223
8	Hydrogen production from biomass and plastic mixtures by pyrolysis-gasification. International Journal of Hydrogen Energy, 2014, 39, 10883-10891.	3.8	210
9	Kinetic study of lignocellulosic biomass oxidative pyrolysis. Fuel, 2012, 95, 305-311.	3.4	207
10	Insights into the coke deposited on HZSM-5, Hβ and HY zeolites during the cracking of polyethylene. Applied Catalysis B: Environmental, 2011, 104, 91-100.	10.8	206
11	Opportunities and barriers for producing high quality fuels from the pyrolysis of scrap tires. Renewable and Sustainable Energy Reviews, 2016, 56, 745-759.	8.2	197
12	Characterization of the waxes obtained by the pyrolysis of polyolefin plastics in a conical spouted bed reactor. Journal of Analytical and Applied Pyrolysis, 2012, 94, 230-237.	2.6	196
13	Pyrolysis of sawdust in a conical spouted-bed reactor with a HZSM-5 catalyst. AICHE Journal, 2000, 46, 1025-1033.	1.8	189
14	Catalytic pyrolysis of HDPE in continuous mode over zeolite catalysts in a conical spouted bed reactor. Journal of Analytical and Applied Pyrolysis, 2009, 85, 345-351.	2.6	189
15	Fast co-pyrolysis of sewage sludge and lignocellulosic biomass in a conical spouted bed reactor. Fuel, 2015, 159, 810-818.	3.4	188
16	Pyrolysis of Sawdust in a Conical Spouted Bed Reactor. Yields and Product Composition. Industrial & Engineering Chemistry Research, 2000, 39, 1925-1933.	1.8	175
17	Deactivating species in the transformation of crude bio-oil with methanol into hydrocarbons on a HZSM-5 catalyst. Journal of Catalysis, 2012, 285, 304-314.	3.1	175
18	Continuous pyrolysis of waste tyres in a conical spouted bed reactor. Fuel, 2010, 89, 1946-1952.	3.4	174

#	Article	IF	CITATIONS
19	Fast characterization of biomass fuels by thermogravimetric analysis (TGA). Fuel, 2015, 140, 744-751.	3.4	173
20	Waste tyre valorization by catalytic pyrolysis – A review. Renewable and Sustainable Energy Reviews, 2020, 129, 109932.	8.2	169
21	Role of acidity and microporous structure in alternative catalysts for the transformation of methanol into olefins. Applied Catalysis A: General, 2005, 283, 197-207.	2.2	164
22	Selective Production of Aromatics by Crude Bio-oil Valorization with a Nickel-Modified HZSM-5 Zeolite Catalyst. Energy & Fuels, 2010, 24, 2060-2070.	2.5	164
23	Kinetic Modeling of Dimethyl Ether Synthesis in a Single Step on a CuOâ~'ZnOâ~'Al ₂ O ₃ 2/sub>2O ₃ Catalyst. Industrial & Engineering Chemistry Research, 2007, 46, 5522-5530.	1.8	162
24	Role of pore structure in the deactivation of zeolites (HZSM-5, Hβ and HY) by coke in the pyrolysis of polyethylene in a conical spouted bed reactor. Applied Catalysis B: Environmental, 2011, 102, 224-231.	10.8	161
25	Sewage sludge valorization by flash pyrolysis in a conical spouted bed reactor. Chemical Engineering Journal, 2015, 273, 173-183.	6.6	161
26	Cracking of High Density Polyethylene Pyrolysis Waxes on HZSM-5 Catalysts of Different Acidity. Industrial & Engineering Chemistry Research, 2013, 52, 10637-10645.	1.8	157
27	Deactivation and regeneration of hybrid catalysts in the single-step synthesis of dimethyl ether from syngas and CO2. Catalysis Today, 2005, 106, 265-270.	2.2	153
28	Design and operation of a conical spouted bed reactor pilot plant (25kg/h) for biomass fast pyrolysis. Fuel Processing Technology, 2013, 112, 48-56.	3.7	148
29	Adsorption of Amido Black 10B from aqueous solution using polyaniline/SiO2 nanocomposite: Experimental investigation and artificial neural network modeling. Journal of Colloid and Interface Science, 2018, 510, 246-261.	5.0	148
30	Product Yields and Compositions in the Continuous Pyrolysis of High-Density Polyethylene in a Conical Spouted Bed Reactor. Industrial & Engineering Chemistry Research, 2011, 50, 6650-6659.	1.8	147
31	Styrene recovery from polystyrene by flash pyrolysis in a conical spouted bed reactor. Waste Management, 2015, 45, 126-133.	3.7	147
32	Steam reforming of different biomass tar model compounds over Ni/Al2O3 catalysts. Energy Conversion and Management, 2017, 136, 119-126.	4.4	147
33	Syngas from steam gasification of polyethylene in a conical spouted bed reactor. Fuel, 2013, 109, 461-469.	3.4	146
34	Influence of operating conditions on the steam gasification of biomass in a conical spouted bed reactor. Chemical Engineering Journal, 2014, 237, 259-267.	6.6	143
35	Waste truck-tyre processing by flash pyrolysis in a conical spouted bed reactor. Energy Conversion and Management, 2017, 142, 523-532.	4.4	141
36	Artificial neural network optimization for methyl orange adsorption onto polyaniline nano-adsorbent: Kinetic, isotherm and thermodynamic studies. Journal of Molecular Liquids, 2017, 244, 189-200.	2.3	141

#	Article	IF	CITATIONS
37	Valorisation of different waste plastics by pyrolysis and in-line catalytic steam reforming for hydrogen production. Energy Conversion and Management, 2018, 156, 575-584.	4.4	136
38	Upgrading the rice husk char obtained by flash pyrolysis for the production of amorphous silica and high quality activated carbon. Bioresource Technology, 2014, 170, 132-137.	4.8	134
39	Coking and sintering progress of a Ni supported catalyst in the steam reforming of biomass pyrolysis volatiles. Applied Catalysis B: Environmental, 2018, 233, 289-300.	10.8	134
40	Wax Formation in the Pyrolysis of Polyolefins in a Conical Spouted Bed Reactor. Energy & Fuels, 2002, 16, 1429-1437.	2.5	130
41	Light olefins from HDPE cracking in a two-step thermal and catalytic process. Chemical Engineering Journal, 2012, 207-208, 27-34.	6.6	128
42	Biomass Oxidative Flash Pyrolysis: Autothermal Operation, Yields and Product Properties. Energy & Fuels, 2012, 26, 1353-1362.	2.5	125
43	Catalyst Deactivation by Coke in the Transformation of Aqueous Ethanol into Hydrocarbons. Kinetic Modeling and Acidity Deterioration of the Catalyst. Industrial & Engineering Chemistry Research, 2002, 41, 4216-4224.	1.8	123
44	Kinetic Description of the Catalytic Pyrolysis of Biomass in a Conical Spouted Bed Reactor. Energy & Fuels, 2005, 19, 765-774.	2.5	122
45	Steam reforming of phenol as biomass tar model compound over Ni/Al2O3 catalyst. Fuel, 2016, 184, 629-636.	3.4	122
46	Operating Conditions for the Pyrolysis of Poly-(ethylene terephthalate) in a Conical Spouted-Bed Reactor. Industrial & Engineering Chemistry Research, 2010, 49, 2064-2069.	1.8	121
47	Olefin Production by Catalytic Transformation of Crude Bio-Oil in a Two-Step Process. Industrial & Engineering Chemistry Research, 2010, 49, 123-131.	1.8	119
48	Waste Refinery: The Valorization of Waste Plastics and End-of-Life Tires in Refinery Units. A Review. Energy & Fuels, 2021, 35, 3529-3557.	2.5	116
49	A sequential process for hydrogen production based on continuous HDPE fast pyrolysis and in-line steam reforming. Chemical Engineering Journal, 2016, 296, 191-198.	6.6	115
50	Influence of Tire Formulation on the Products of Continuous Pyrolysis in a Conical Spouted Bed Reactor. Energy & Fuels, 2009, 23, 5423-5431.	2.5	114
51	Production of Light Olefins from Polyethylene in a Two-Step Process: Pyrolysis in a Conical Spouted Bed and Downstream High-Temperature Thermal Cracking. Industrial & Engineering Chemistry Research, 2012, 51, 13915-13923.	1.8	114
52	Hydrogen production from biomass by continuous fast pyrolysis and in-line steam reforming. RSC Advances, 2016, 6, 25975-25985.	1.7	114
53	Effect of polyethylene co-feeding in the steam gasification of biomass in a conical spouted bed reactor. Fuel, 2015, 153, 393-401.	3.4	112
54	Investigations on heat transfer and hydrodynamics under pyrolysis conditions of a pilot-plant draft tube conical spouted bed reactor. Chemical Engineering and Processing: Process Intensification, 2011, 50, 790-798.	1.8	109

#	Article	IF	CITATIONS
55	Hydrogen-rich gas production by continuous pyrolysis and in-line catalytic reforming of pine wood waste and HDPE mixtures. Energy Conversion and Management, 2017, 136, 192-201.	4.4	109
56	Kinetics of the irreversible deactivation of the HZSM-5 catalyst in the MTO process. Chemical Engineering Science, 2003, 58, 5239-5249.	1.9	108
57	Product distribution obtained in the pyrolysis of tyres in a conical spouted bed reactor. Chemical Engineering Science, 2007, 62, 5271-5275.	1.9	107
58	Progress on Catalyst Development for the Steam Reforming of Biomass and Waste Plastics Pyrolysis Volatiles: A Review. Energy & Fuels, 2021, 35, 17051-17084.	2.5	106
59	Influence of FCC catalyst steaming on HDPE pyrolysis product distribution. Journal of Analytical and Applied Pyrolysis, 2009, 85, 359-365.	2.6	105
60	Deposition and Characteristics of Coke over a H-ZSM5 Zeolite-Based Catalyst in the MTG Process. Industrial & Engineering Chemistry Research, 1996, 35, 3991-3998.	1.8	103
61	Valorization of citrus wastes by fast pyrolysis in a conical spouted bed reactor. Fuel, 2018, 224, 111-120.	3.4	103
62	Vacuum Pyrolysis of Waste Tires by Continuously Feeding into a Conical Spouted Bed Reactor. Industrial & Engineering Chemistry Research, 2010, 49, 8990-8997.	1.8	102
63	Kinetic modelling of dimethyl ether synthesis from (H2+CO2) by considering catalyst deactivation. Chemical Engineering Journal, 2011, 174, 660-667.	6.6	101
64	Novel Ni–Mg–Al–Ca catalyst for enhanced hydrogen production for the pyrolysis–gasification of a biomass/plastic mixture. Journal of Analytical and Applied Pyrolysis, 2015, 113, 15-21.	2.6	101
65	Characterization of the bio-oil obtained by fast pyrolysis of sewage sludge in a conical spouted bed reactor. Fuel Processing Technology, 2016, 149, 169-175.	3.7	101
66	Transformation of Several Plastic Wastes into Fuels by Catalytic Cracking. Industrial & Engineering Chemistry Research, 1997, 36, 4523-4529.	1.8	100
67	Steam gasification of biomass in a conical spouted bed reactor with olivine and Î ³ -alumina as primary catalysts. Fuel Processing Technology, 2013, 116, 292-299.	3.7	100
68	Catalyst Effect on the Composition of Tire Pyrolysis Products. Energy & Fuels, 2008, 22, 2909-2916.	2.5	99
69	Improving bio-oil properties through the fast co-pyrolysis of lignocellulosic biomass and waste tyres. Waste Management, 2019, 85, 385-395.	3.7	99
70	Kinetic Study of Polyolefin Pyrolysis in a Conical Spouted Bed Reactor. Industrial & Engineering Chemistry Research, 2002, 41, 4559-4566.	1.8	98
71	Defluidization modelling of pyrolysis of plastics in a conical spouted bed reactor. Chemical Engineering and Processing: Process Intensification, 2005, 44, 231-235.	1.8	97
72	Deactivation of a CuOâ^'ZnOâ^'Al ₂ O ₃ /γ-Al ₂ O ₃ Catalyst in the Synthesis of Dimethyl Ether. Industrial & Engineering Chemistry Research, 2008, 47, 2238-2247.	1.8	97

#	Article	IF	CITATIONS
73	Hydrothermal stability of HZSM-5 catalysts modified with Ni for the transformation of bioethanol into hydrocarbons. Fuel, 2010, 89, 3365-3372.	3.4	96
74	Physical Activation of Rice Husk Pyrolysis Char for the Production of High Surface Area Activated Carbons. Industrial & Engineering Chemistry Research, 2015, 54, 7241-7250.	1.8	96
75	Stability and hydrodynamics of conical spouted beds with binary mixtures. Industrial & Engineering Chemistry Research, 1993, 32, 2826-2834.	1.8	95
76	Stability of different Ni supported catalysts in the in-line steam reforming of biomass fast pyrolysis volatiles. Applied Catalysis B: Environmental, 2019, 242, 109-120.	10.8	95
77	Evaluation of the properties of tyre pyrolysis oils obtained in a conical spouted bed reactor. Energy, 2017, 128, 463-474.	4.5	94
78	Deactivation dynamics of a Ni supported catalyst during the steam reforming of volatiles from waste polyethylene pyrolysis. Applied Catalysis B: Environmental, 2017, 209, 554-565.	10.8	93
79	Modified HZSM-5 zeolites for intensifying propylene production in the transformation of 1-butene. Chemical Engineering Journal, 2014, 251, 80-91.	6.6	89
80	Steam reforming of raw bio-oil over Ni/La2O3-αAl2O3: Influence of temperature on product yields and catalyst deactivation. Fuel, 2018, 216, 463-474.	3.4	89
81	Segregation in Conical Spouted Beds with Binary and Ternary Mixtures of Equidensity Spherical Particles. Industrial & Engineering Chemistry Research, 1994, 33, 1838-1844.	1.8	88
82	Attenuation of Catalyst Deactivation by Cofeeding Methanol for Enhancing the Valorisation of Crude Bio-oil. Energy & Fuels, 2009, 23, 4129-4136.	2.5	88
83	Identification of the coke deposited on an HZSM-5 zeolite catalyst during the sequenced pyrolysis–cracking of HDPE. Applied Catalysis B: Environmental, 2014, 148-149, 436-445.	10.8	88
84	Influence of the support on Ni catalysts performance in the in-line steam reforming of biomass fast pyrolysis derived volatiles. Applied Catalysis B: Environmental, 2018, 229, 105-113.	10.8	88
85	Effect of Si/Al Ratio and of Acidity of H-ZSM5 Zeolites on the Primary Products of Methanol to Gasoline Conversion. Journal of Chemical Technology and Biotechnology, 1996, 66, 183-191.	1.6	87
86	Role of water in the kinetic modeling of catalyst deactivation in the MTG process. AICHE Journal, 2002, 48, 1561-1571.	1.8	87
87	Continuous Polyolefin Cracking on an HZSM-5 Zeolite Catalyst in a Conical Spouted Bed Reactor. Industrial & Engineering Chemistry Research, 2011, 50, 6061-6070.	1.8	87
88	Kinetics of scrap tyre pyrolysis under vacuum conditions. Waste Management, 2009, 29, 2649-2655.	3.7	83
89	HDPE pyrolysis-steam reforming in a tandem spouted bed-fixed bed reactor for H2 production. Journal of Analytical and Applied Pyrolysis, 2015, 116, 34-41.	2.6	83
90	Design factors of conical spouted beds and jet spouted beds. Industrial & Engineering Chemistry Research, 1993, 32, 1245-1250.	1.8	82

#	Article	IF	CITATIONS
91	Pressure drop in conical spouted beds. The Chemical Engineering Journal, 1993, 51, 53-60.	0.4	80
92	Steam activation of pyrolytic tyre char at different temperatures. Journal of Analytical and Applied Pyrolysis, 2009, 85, 539-543.	2.6	80
93	Performance of a conical spouted bed pilot plant for bio-oil production by poplar flash pyrolysis. Fuel Processing Technology, 2015, 137, 283-289.	3.7	80
94	Solid cross-flow into the spout and particle trajectories in conical spouted beds. Chemical Engineering Science, 1998, 53, 3561-3570.	1.9	79
95	Catalytic pyrolysis of high density polyethylene in a conical spouted bed reactor. Journal of Analytical and Applied Pyrolysis, 2007, 79, 450-455.	2.6	79
96	Effect of Vacuum on Lignocellulosic Biomass Flash Pyrolysis in a Conical Spouted Bed Reactor. Energy & Fuels, 2011, 25, 3950-3960.	2.5	79
97	Recycling poly-(methyl methacrylate) by pyrolysis in a conical spouted bed reactor. Chemical Engineering and Processing: Process Intensification, 2010, 49, 1089-1094.	1.8	77
98	Relationship between surface acidity and activity of catalysts in the transformation of methanol into hydrocarbons. Journal of Chemical Technology and Biotechnology, 1996, 65, 186-192.	1.6	75
99	Role of temperature on gasification performance and tar composition in a fountain enhanced conical spouted bed reactor. Energy Conversion and Management, 2018, 171, 1589-1597.	4.4	75
100	Hydrodynamics of Sawdust and Mixtures of Wood Residues in Conical Spouted Beds. Industrial & Engineering Chemistry Research, 1994, 33, 993-1000.	1.8	73
101	Kinetic modelling for the transformation of bioethanol into olefins on a hydrothermally stable Ni–HZSM-5 catalyst considering the deactivation by coke. Chemical Engineering Journal, 2011, 167, 262-277.	6.6	73
102	Role of operating conditions in the catalyst deactivation in the in-line steam reforming of volatiles from biomass fast pyrolysis. Fuel, 2018, 216, 233-244.	3.4	73
103	Behaviour of primary catalysts in the biomass steam gasification in a fountain confined spouted bed. Fuel, 2019, 253, 1446-1456.	3.4	73
104	Effect of operating conditions on solid velocity in the spout, annulus and fountain of spouted beds. Chemical Engineering Science, 2001, 56, 3585-3594.	1.9	72
105	Minimum Spouting Velocity of Conical Spouted Beds Equipped with Draft Tubes of Different Configuration. Industrial & Engineering Chemistry Research, 2013, 52, 2995-3006.	1.8	71
106	Catalyst deactivation by coking in the MTG process in fixed and fluidized bed reactors. Catalysis Today, 1997, 37, 239-248.	2.2	69
107	Measurement of Particle Velocities in Conical Spouted Beds Using an Optical Fiber Probe. Industrial & amp; Engineering Chemistry Research, 1998, 37, 4520-4527.	1.8	69
108	Effect of the acidity of the HZSM-5 zeolite catalyst on the cracking of high density polyethylene in a conical spouted bed reactor. Applied Catalysis A: General, 2012, 415-416, 89-95.	2.2	69

#	Article	IF	CITATIONS
109	Fast pyrolysis of eucalyptus waste in a conical spouted bed reactor. Bioresource Technology, 2015, 194, 225-232.	4.8	69
110	Pyrolysis and in-line catalytic steam reforming of polystyrene through a two-step reaction system. Journal of Analytical and Applied Pyrolysis, 2016, 122, 502-510.	2.6	68
111	Effect of CeO2 and MgO promoters on the performance of a Ni/Al2O3 catalyst in the steam reforming of biomass pyrolysis volatiles. Fuel Processing Technology, 2020, 198, 106223.	3.7	68
112	Kinetic Modelling of the Transformation of Aqueous Ethanol into Hydrocarbons on a HZSM-5 Zeolite. Industrial & Engineering Chemistry Research, 2001, 40, 3467-3474.	1.8	67
113	Effect of Cofeeding Butane with Methanol on the Deactivation by Coke of a HZSM-5 Zeolite Catalyst. Industrial & Engineering Chemistry Research, 2011, 50, 9980-9988.	1.8	67
114	Pilot scale conical spouted bed pyrolysis reactor: Draft tube selection and hydrodynamic performance. Powder Technology, 2012, 219, 49-58.	2.1	67
115	HZSM-5 and HY Zeolite Catalyst Performance in the Pyrolysis of Tires in a Conical Spouted Bed Reactor. Industrial & Engineering Chemistry Research, 2008, 47, 7600-7609.	1.8	66
116	Design of Conical Spouted Beds for the Handling of Low-Density Solids. Industrial & Engineering Chemistry Research, 2004, 43, 655-661.	1.8	64
117	Upgrading model compounds and Scrap Tires Pyrolysis Oil (STPO) on hydrotreating NiMo catalysts with tailored supports. Fuel, 2015, 145, 158-169.	3.4	64
118	Hydrogen Production by High Density Polyethylene Steam Gasification and In-Line Volatile Reforming. Industrial & Engineering Chemistry Research, 2015, 54, 9536-9544.	1.8	64
119	Polyethylene Cracking on a Spent FCC Catalyst in a Conical Spouted Bed. Industrial & Engineering Chemistry Research, 2012, 51, 14008-14017.	1.8	63
120	Pyrolysis of plastic wastes in a fountain confined conical spouted bed reactor: Determination of stable operating conditions. Energy Conversion and Management, 2021, 229, 113768.	4.4	63
121	Flash pyrolysis of forestry residues from the Portuguese Central Inland Region within the framework of the BioREFINA-Ter project. Bioresource Technology, 2013, 129, 512-518.	4.8	62
122	Catalytic steam reforming of biomass fast pyrolysis volatiles over Ni–Co bimetallic catalysts. Journal of Industrial and Engineering Chemistry, 2020, 91, 167-181.	2.9	62
123	Correlation for calculation of the gas dispersion coefficient in conical spouted beds. Chemical Engineering Science, 1995, 50, 2161-2172.	1.9	60
124	Assessment of steam gasification kinetics of the char from lignocellulosic biomass in a conical spouted bed reactor. Energy, 2016, 107, 493-501.	4.5	60
125	Improving the DME steam reforming catalyst by alkaline treatment of the HZSM-5 zeolite. Applied Catalysis B: Environmental, 2013, 130-131, 73-83.	10.8	59
126	Assessment of a conical spouted with an enhanced fountain bed for biomass gasification. Fuel, 2017, 203, 825-831.	3.4	59

#	Article	IF	CITATIONS
127	Design and Operation of a Catalytic Polymerization Reactor in a Dilute Spouted Bed Regime. Industrial & Engineering Chemistry Research, 1997, 36, 1637-1643.	1.8	58
128	Kinetics of scrap tyre pyrolysis under fast heating conditions. Journal of Analytical and Applied Pyrolysis, 2005, 73, 290-298.	2.6	58
129	Fitting performance of artificial neural networks and empirical correlations to estimate higher heating values of biomass. Fuel, 2016, 180, 377-383.	3.4	58
130	Solute transport modelling in karst conduits with slow zones during different hydrologic conditions. Journal of Hydrology, 2010, 390, 182-189.	2.3	56
131	Preliminary studies on fuel production through LCO hydrocracking on noble-metal supported catalysts. Fuel, 2012, 94, 504-515.	3.4	56
132	Design and operation of a jet spouted bed reactor with continuous catalyst feed in the benzyl alcohol polymerization. Industrial & Engineering Chemistry Research, 1987, 26, 1297-1304.	1.8	55
133	Kinetic modelling of tyre pyrolysis in a conical spouted bed reactor. Journal of Analytical and Applied Pyrolysis, 2008, 81, 127-132.	2.6	55
134	On the pyrolysis of different microalgae species in a conical spouted bed reactor: Bio-fuel yields and characterization. Bioresource Technology, 2020, 311, 123561.	4.8	52
135	Preparation of adsorbents from sewage sludge pyrolytic char by carbon dioxide activation. Chemical Engineering Research and Design, 2016, 103, 76-86.	2.7	51
136	Advantages of confining the fountain in a conical spouted bed reactor for biomass steam gasification. Energy, 2018, 153, 455-463.	4.5	51
137	Evolution of biomass char features and their role in the reactivity during steam gasification in a conical spouted bed reactor. Energy Conversion and Management, 2019, 181, 214-222.	4.4	51
138	Effect of La2O3 promotion on a Ni/Al2O3 catalyst for H2 production in the in-line biomass pyrolysis-reforming. Fuel, 2020, 262, 116593.	3.4	51
139	Expansion of spouted beds in conical contactors. The Chemical Engineering Journal, 1993, 51, 45-52.	0.4	50
140	CFD simulation of cylindrical spouted beds by the kinetic theory of granular flow. Powder Technology, 2013, 246, 303-316.	2.1	50
141	Analysis of hydrogen production potential from waste plastics by pyrolysis and in line oxidative steam reforming. Fuel Processing Technology, 2022, 225, 107044.	3.7	50
142	Local Bed Voidage in Conical Spouted Beds. Industrial & Engineering Chemistry Research, 1998, 37, 2553-2558.	1.8	49
143	Catalytic Cracking of Waxes Produced by the Fast Pyrolysis of Polyolefins. Energy & Fuels, 2007, 21, 561-569.	2.5	49
144	Isotherms of chemical adsorption of bases on solid catalysts for acidity measurement. Journal of Chemical Technology and Biotechnology, 1994, 60, 141-146.	1.6	48

#	Article	IF	CITATIONS
145	Thermal recycling of polystyrene and polystyrene-butadiene dissolved in a light cycle oil. Journal of Analytical and Applied Pyrolysis, 2003, 70, 747-760.	2.6	47
146	Synergies in the production of olefins by combined cracking of n-butane and methanol on a HZSM-5 zeolite catalyst. Chemical Engineering Journal, 2010, 160, 760-769.	6.6	47
147	Fountain confined conical spouted beds. Powder Technology, 2017, 312, 334-346.	2.1	47
148	Kinetic study of fast pyrolysis of sawdust in a conical spouted bed reactor in the range 400-500 °C. Journal of Chemical Technology and Biotechnology, 2001, 76, 469-476.	1.6	45
149	Predicting travel times and transport characterization in karst conduits by analyzing tracer-breakthrough curves. Journal of Hydrology, 2007, 334, 183-198.	2.3	45
150	Effect of acid catalysts on scrap tyre pyrolysis under fast heating conditions. Journal of Analytical and Applied Pyrolysis, 2008, 82, 199-204.	2.6	45
151	Deactivation Kinetics for Direct Dimethyl Ether Synthesis on a CuOâ^'ZnOâ^'Al ₂ 0 ₃ /γ-Al ₂ 0 ₃ Catalyst. Industrial & Engineering Chemistry Research, 2010, 49, 481-489.	1.8	44
152	Causes of deactivation of bifunctional catalysts made up of CuO-ZnO-Al2O3 and desilicated HZSM-5 zeolite in DME steam reforming. Applied Catalysis A: General, 2014, 483, 76-84.	2.2	44
153	Prospects for Obtaining High Quality Fuels from the Hydrocracking of a Hydrotreated Scrap Tires Pyrolysis Oil. Energy & Fuels, 2015, 29, 5458-5466.	2.5	44
154	Product distribution modelling in the thermal pyrolysis of high density polyethylene. Journal of Hazardous Materials, 2007, 144, 708-714.	6.5	43
155	Regenerability of a Ni catalyst in the catalytic steam reforming of biomass pyrolysis volatiles. Journal of Industrial and Engineering Chemistry, 2018, 68, 69-78.	2.9	43
156	Spout and Fountain Geometry in Conical Spouted Beds Consisting of Solids of Varying Density. Industrial & Engineering Chemistry Research, 2005, 44, 193-200.	1.8	42
157	Drying of Biomass in a Conical Spouted Bed with Different Types of Internal Devices. Drying Technology, 2012, 30, 207-216.	1.7	42
158	Effect of space velocity on the hydrocracking of Light Cycle Oil over a Pt–Pd/HY zeolite catalyst. Fuel Processing Technology, 2012, 95, 8-15.	3.7	42
159	Steam reforming of plastic pyrolysis model hydrocarbons and catalyst deactivation. Applied Catalysis A: General, 2016, 527, 152-160.	2.2	42
160	Kinetic modeling and experimental validation of biomass fast pyrolysis in a conical spouted bed reactor. Chemical Engineering Journal, 2019, 373, 677-686.	6.6	42
161	Regeneration of a catalyst based on a SAPO-34 used in the transformation of methanol into olefins. Journal of Chemical Technology and Biotechnology, 1999, 74, 1082-1088.	1.6	41
162	Kinetic Study of Carbon Dioxide Gasification of Rice Husk Fast Pyrolysis Char. Energy & Fuels, 2015, 29, 3198-3207.	2.5	40

#	Article	IF	CITATIONS
163	New operation regimes in fountain confined conical spouted beds. Chemical Engineering Science, 2020, 211, 115255.	1.9	40
164	Study of Local Properties in Conical Spouted Beds Using an Optical Fiber Probe. Industrial & Engineering Chemistry Research, 1995, 34, 4033-4039.	1.8	39
165	Olefin production by cofeeding methanol and <i>n</i> â€butane: Kinetic modeling considering the deactivation of HZSMâ€5 zeolite. AICHE Journal, 2011, 57, 2841-2853.	1.8	39
166	Modifications in the HZSM-5 zeolite for the selective transformation of ethylene into propylene. Applied Catalysis A: General, 2014, 479, 17-25.	2.2	39
167	Particle Cycle Times and Solid Circulation Rates in Conical Spouted Beds with Draft Tubes of Different Configuration. Industrial & Engineering Chemistry Research, 2013, 52, 15959-15967.	1.8	38
168	Minimum spouting velocity for the pyrolysis of scrap tyres with sand in conical spouted beds. Powder Technology, 2006, 165, 128-132.	2.1	37
169	Calculation of the kinetics of deactivation by coke in an integral reactor for a triangular scheme reaction. Chemical Engineering Science, 1993, 48, 1077-1087.	1.9	36
170	Acidity deterioration and coke deposition in a HZSM5 zeolite in the MTG process. Studies in Surface Science and Catalysis, 1994, 88, 567-572.	1.5	36
171	Catalyst discrimination for olefin production by coupled methanol/n-butane cracking. Applied Catalysis A: General, 2010, 383, 202-210.	2.2	36
172	Comparative analysis of different static mixers performance by CFD technique: An innovative mixer. Chinese Journal of Chemical Engineering, 2020, 28, 672-684.	1.7	36
173	Operating and Peak Pressure Drops in Conical Spouted Beds Equipped with Draft Tubes of Different Configuration. Industrial & Engineering Chemistry Research, 2014, 53, 415-427.	1.8	35
174	A new fountain confinement device for fluidizing fine and ultrafine sands in conical spouted beds. Powder Technology, 2018, 328, 38-46.	2.1	35
175	Performance of a Ni/ZrO2 catalyst in the steam reforming of the volatiles derived from biomass pyrolysis. Journal of Analytical and Applied Pyrolysis, 2018, 136, 222-231.	2.6	35
176	Co-pyrolysis of binary and ternary mixtures of microalgae, wood and waste tires through TGA. Renewable Energy, 2019, 142, 264-271.	4.3	35
177	Operating Conditions of Conical Spouted Beds with a Draft Tube. Effect of the Diameter of the Draft Tube and of the Height of Entrainment Zone. Industrial & Engineering Chemistry Research, 2007, 46, 2877-2884.	1.8	34
178	Pyrolysis kinetics of forestry residues from the Portuguese Central Inland Region. Chemical Engineering Research and Design, 2013, 91, 2682-2690.	2.7	34
179	Effect of combining metallic and acid functions in CZA/HZSM-5 desilicated zeolite catalysts on the DME steam reforming in a fluidized bed. International Journal of Hydrogen Energy, 2013, 38, 10019-10028.	3.8	34
180	Kinetic Model for the Transformation of 1-Butene on a K-Modified HZSM-5 Catalyst. Industrial & Engineering Chemistry Research, 2014, 53, 10599-10607.	1.8	34

#	Article	IF	CITATIONS
181	Local porosity in conical spouted beds consisting of solids of varying density. Chemical Engineering Science, 2005, 60, 2017-2025.	1.9	33
182	CeO ₂ and La ₂ O ₃ Promoters in the Steam Reforming of Polyolefinic Waste Plastic Pyrolysis Volatiles on Ni-Based Catalysts. ACS Sustainable Chemistry and Engineering, 2020, 8, 17307-17321.	3.2	33
183	Role of temperature in the biomass steam pyrolysis in a conical spouted bed reactor. Energy, 2022, 238, 122053.	4.5	33
184	Effect of HZSM-5 catalyst addition on the cracking of polyolefin pyrolysis waxes under FCC conditions. Chemical Engineering Journal, 2007, 132, 17-26.	6.6	32
185	HZSM-5 Zeolite As Catalyst Additive for Residue Cracking under FCC Conditions. Energy & Fuels, 2009, 23, 4215-4223.	2.5	32
186	Kinetic behaviour of catalysts with different CuO-ZnO-Al2O3 metallic function compositions in DME steam reforming in a fluidized bed. Applied Catalysis B: Environmental, 2013, 142-143, 315-322.	10.8	32
187	Intensifying Propylene Production by 1-Butene Transformation on a K Modified HZSM-5 Zeolite-Catalyst. Industrial & Engineering Chemistry Research, 2014, 53, 4614-4622.	1.8	32
188	Effect of calcination conditions on the performance of Ni/MgO–Al ₂ O ₃ catalysts in the steam reforming of biomass fast pyrolysis volatiles. Catalysis Science and Technology, 2019, 9, 3947-3963.	2.1	32
189	Evaluation of performance and moisture sensitivity of glass-containing warm mix asphalt modified with zycothermTM as an anti-stripping additive. Construction and Building Materials, 2019, 197, 185-194.	3.2	32
190	Assessment of product yields and catalyst deactivation in fixed and fluidized bed reactors in the steam reforming of biomass pyrolysis volatiles. Chemical Engineering Research and Design, 2021, 145, 52-62.	2.7	32
191	Experimental study and modeling of biomass char gasification kinetics in a novel thermogravimetric flow reactor. Chemical Engineering Journal, 2020, 396, 125200.	6.6	31
192	Kinetics of Scrap Tire Pyrolysis in a Conical Spouted Bed Reactor. Industrial & Engineering Chemistry Research, 2005, 44, 3918-3924.	1.8	30
193	CFD study of particle velocity profiles inside a draft tube in a cylindrical spouted bed with conical base. Journal of the Taiwan Institute of Chemical Engineers, 2014, 45, 2140-2149.	2.7	30
194	Comparison of Ni and Co Catalysts for Ethanol Steam Reforming in a Fluidized Bed Reactor. Catalysis Letters, 2014, 144, 1134-1143.	1.4	29
195	Calculation of the kinetics of deactivation by coke of a silica-alumina catalyst in the dehydration of 2-ethylhexanol. Industrial & Engineering Chemistry Research, 1993, 32, 458-465.	1.8	28
196	Principal component analysis for kinetic scheme proposal in the thermal and catalytic pyrolysis of waste tyres. Chemical Engineering Science, 2014, 106, 9-17.	1.9	28
197	Influence of the fountain confiner in a conical spouted bed dryer. Powder Technology, 2019, 356, 193-199.	2.1	28
198	Effect of Pressure on the Hydrocracking of Light Cycle Oil with a Pt–Pd/HY Catalyst. Energy & Fuels, 2012, 26, 5897-5904.	2.5	27

#	Article	IF	CITATIONS
199	Kinetic Modeling of the Hydrotreating and Hydrocracking Stages for Upgrading Scrap Tires Pyrolysis Oil (STPO) toward High-Quality Fuels. Energy & Fuels, 2015, 29, 7542-7553.	2.5	27
200	Influence of reactor and condensation system design on tyre pyrolysis products yields. Journal of Analytical and Applied Pyrolysis, 2019, 143, 104683.	2.6	27
201	Thermodynamic assessment of the oxidative steam reforming of biomass fast pyrolysis volatiles. Energy Conversion and Management, 2020, 214, 112889.	4.4	27
202	Influence of temperature on products from fluidized bed pyrolysis of wood and solid recovered fuel. Fuel, 2021, 283, 118922.	3.4	27
203	Char-formation kinetics in the pyrolysis of sawdust in a conical spouted bed reactor. Journal of Chemical Technology and Biotechnology, 2000, 75, 583-588.	1.6	26
204	Catalyst reactivation kinetics for methanol transformation into hydrocarbons. Expressions for designing reaction–regeneration cycles in isothermal and adiabatic fixed bed reactor. Chemical Engineering Science, 2001, 56, 5059-5071.	1.9	26
205	Kinetic modelling of the cracking of HDPE pyrolysis volatiles on a HZSM-5 zeolite based catalyst. Chemical Engineering Science, 2014, 116, 635-644.	1.9	26
206	In line upgrading of biomass fast pyrolysis products using low-cost catalysts. Fuel, 2021, 296, 120682.	3.4	26
207	Sorption enhanced ethanol steam reforming on a bifunctional Ni/CaO catalyst for H2 production. Journal of Environmental Chemical Engineering, 2021, 9, 106725.	3.3	26
208	Minimum spouting velocity under vacuum and high temperature in conical spouted beds. Canadian Journal of Chemical Engineering, 2009, 87, 541-546.	0.9	25
209	Pathways of coke formation on an MFI catalyst during the cracking of waste polyolefins. Catalysis Science and Technology, 2012, 2, 504.	2.1	25
210	Effect of the operating conditions on the conversion of syngas into liquid hydrocarbons over a Cr2O3-ZnO/ZSM5 bifunctional catalyst. Journal of Chemical Technology and Biotechnology, 1998, 72, 190-196.	1.6	24
211	Bed Voidage in Conical Sawdust Beds in the Transition Regime between Spouting and Jet Spouting. Industrial & Engineering Chemistry Research, 1999, 38, 4120-4122.	1.8	24
212	Modelling batch drying of sand in a draft-tube conical spouted bed. Chemical Engineering Research and Design, 2011, 89, 2054-2062.	2.7	24
213	Influence of contactor geometry and draft tube configuration on the cycle time distribution in sawdust conical spouted beds. Chemical Engineering Research and Design, 2015, 102, 80-89.	2.7	24
214	Minimum spouting velocity for conical spouted beds of vegetable waste biomasses. Journal of the Taiwan Institute of Chemical Engineers, 2016, 60, 509-519.	2.7	24
215	CFD-DEM simulation of a conical spouted bed with open-sided draft tube containing fine particles. Journal of the Taiwan Institute of Chemical Engineers, 2017, 81, 275-287.	2.7	24
216	Influence of the conditions for reforming HDPE pyrolysis volatiles on the catalyst deactivation by coke. Fuel Processing Technology, 2018, 171, 100-109.	3.7	24

#	Article	IF	CITATIONS
217	Kinetic study of the catalytic reforming of biomass pyrolysis volatiles over a commercial Ni/Al2O3 catalyst. International Journal of Hydrogen Energy, 2018, 43, 12023-12033.	3.8	24
218	Estimation of the minimum spouting velocity in shallow spouted beds by intelligent approaches: Study of fine and coarse particles. Powder Technology, 2019, 354, 456-465.	2.1	24
219	OPTIMIZATION OF THE OPERATION IN A REACTOR WITH CONTINUOUS CATALYST CIRCULATION IN THE GASEOUS BENZYL ALCOHOL POLYMERIZATION. Chemical Engineering Communications, 1989, 75, 121-134.	1.5	23
220	Deactivation and acidity deterioration of a silica/alumina catalyst in the isomerization of cis-butene. Industrial & Engineering Chemistry Research, 1993, 32, 588-593.	1.8	23
221	Kinetic Modeling for Assessing the Product Distribution in Toluene Hydrocracking on a Pt/HZSM-5 Catalyst. Industrial & Engineering Chemistry Research, 2008, 47, 1043-1050.	1.8	23
222	Effect of Temperature in Hydrocracking of Light Cycle Oil on a Noble Metalâ€ S upported Catalyst for Fuel Production. Chemical Engineering and Technology, 2012, 35, 653-660.	0.9	23
223	Effect of Operating Conditions on Dimethyl Ether Steam Reforming in a Fluidized Bed Reactor with a CuO–ZnO–Al2O3 and Desilicated ZSM-5 Zeolite Bifunctional Catalyst. Industrial & Engineering Chemistry Research, 2014, 53, 3462-3471.	1.8	23
224	One-dimensional modelling of conical spouted beds. Chemical Engineering and Processing: Process Intensification, 2009, 48, 1264-1269.	1.8	22
225	Fine particle entrainment in fountain confined conical spouted beds. Powder Technology, 2019, 344, 278-285.	2.1	22
226	Real-time monitoring of milk powder moisture content during drying in a spouted bed dryer using a hybrid neural soft sensor. Drying Technology, 2019, 37, 1184-1190.	1.7	22
227	Conversion of HDPE into Value Products by Fast Pyrolysis Using FCC Spent Catalysts in a Fountain Confined Conical Spouted Bed Reactor. ChemSusChem, 2021, 14, 4291-4300.	3.6	22
228	Conditioning the volatile stream from biomass fast pyrolysis for the attenuation of steam reforming catalyst deactivation. Fuel, 2022, 312, 122910.	3.4	22
229	Solid Trajectories and Cycle Times in Spouted Beds. Industrial & Engineering Chemistry Research, 2004, 43, 3433-3438.	1.8	21
230	Bed-to-surface heat transfer in conical spouted beds of biomass–sand mixtures. Powder Technology, 2015, 283, 447-454.	2.1	21
231	CFD modeling of heat transfer and hydrodynamics in a draft tube conical spouted bed reactor under pyrolysis conditions: Impact of wall boundary condition. Applied Thermal Engineering, 2017, 127, 224-232.	3.0	21
232	Isomerization of butenes as a test reaction for measurement of solid catalyst acidity. Industrial & Engineering Chemistry Research, 1990, 29, 1172-1178.	1.8	20
233	Enhancement of aromatic hydro-upgrading on a Pt catalyst by promotion with Pd and shape-selective supports. Fuel Processing Technology, 2012, 101, 64-72.	3.7	20
234	Effect of slip boundary conditions on the simulation of microparticle velocity fields in a conical fluidized bed. AICHE Journal, 2013, 59, 4502-4518.	1.8	20

#	Article	IF	CITATIONS
235	Solute transport characterization in karst aquifers by tracer injection tests for a sustainable water resource management. Journal of Hydrology, 2017, 547, 269-279.	2.3	20
236	Comparison of catalytic performance of an iron-alumina pillared montmorillonite and HZSM-5 zeolite on a spouted bed reactor. Journal of Analytical and Applied Pyrolysis, 2018, 130, 320-331.	2.6	20
237	Unburned material from biomass combustion as low-cost adsorbent for amoxicillin removal from wastewater. Journal of Cleaner Production, 2021, 284, 124732.	4.6	20
238	CFD modeling and experimental validation of biomass fast pyrolysis in a conical spouted bed reactor. Journal of Analytical and Applied Pyrolysis, 2021, 154, 105011.	2.6	20
239	Local Bed Voidage in Spouted Beds. Industrial & Engineering Chemistry Research, 2001, 40, 427-433.	1.8	19
240	Optimisation of combined cooling, heating and power (CCHP) systems incorporating the solar and geothermal energy: a review study. International Journal of Ambient Energy, 2022, 43, 42-60.	1.4	19
241	Study of temperature-programmed desorption of tert-butylamine to measure the surface acidity of solid catalysts. Industrial & Engineering Chemistry Research, 1990, 29, 1621-1626.	1.8	18
242	Co-feeding water to attenuate deactivation of the catalyst metallic function (CuO–ZnO–Al2O3) by coke in the direct synthesis of dimethyl ether. Applied Catalysis B: Environmental, 2011, 106, 167-167.	10.8	18
243	Fluidization of micronic particles in a conical fluidized bed: Experimental and numerical study of static bed height effect. AICHE Journal, 2012, 58, 730-744.	1.8	18
244	Principal component analysis for kinetic scheme proposal in the thermal pyrolysis of waste HDPE plastics. Chemical Engineering Journal, 2014, 254, 357-364.	6.6	18
245	Influence of the kinetic scheme and heat balance on the modelling of biomass combustion in a conical spouted bed. Energy, 2019, 175, 758-767.	4.5	18
246	Fountain Geometry in Shallow Spouted Beds. Industrial & Engineering Chemistry Research, 2004, 43, 1163-1168.	1.8	17
247	Effect of Temperature on Fine Particle Drying in a Draftâ€Tube Conical Spouted Bed. Chemical Engineering and Technology, 2011, 34, 1130-1135.	0.9	17
248	Development of a bifunctional catalyst for dimethyl ether steam reforming with CuFe2O4 spinel as the metallic function. Journal of Industrial and Engineering Chemistry, 2016, 36, 169-179.	2.9	17
249	An adaptive lumped parameter cascade model for orange juice solid waste drying in spouted bed. Drying Technology, 2017, 35, 577-584.	1.7	17
250	Kinetic modelling of pine sawdust combustion in a conical spouted bed reactor. Fuel, 2018, 227, 256-266.	3.4	17
251	Smart models to predict the minimum spouting velocity of conical spouted beds with non-porous draft tube. Chemical Engineering Research and Design, 2018, 138, 331-340.	2.7	17
252	Catalyst Performance in the HDPE Pyrolysis-Reforming under Reaction-Regeneration Cycles. Catalysts, 2019, 9, 414.	1.6	17

#	Article	IF	CITATIONS
253	Cracking of Coker Naphtha with Gasâ~'Oil. Effect of HZSM-5 Zeolite Addition to the Catalyst. Energy & Fuels, 2007, 21, 11-18.	2.5	16
254	Effect of hydrogen on the cracking mechanisms of cycloalkanes over zeolites. Catalysis Today, 2010, 150, 363-367.	2.2	16
255	Effect of draft tube geometry on pressure drop in draft tube conical spouted beds. Canadian Journal of Chemical Engineering, 2013, 91, 1865-1870.	0.9	16
256	Prediction of the Minimum Spouting Velocity by Genetic Programming Approach. Industrial & Engineering Chemistry Research, 2014, 53, 12639-12643.	1.8	16
257	Selecting Monitoring Variables in the Manual Composting of Municipal Solid Waste Based on Principal Component Analysis. Waste and Biomass Valorization, 2019, 10, 1811-1819.	1.8	16
258	Solid Flow in Jet Spouted Beds. Industrial & amp; Engineering Chemistry Research, 1996, 35, 2716-2724.	1.8	15
259	COKE COMBUSTION AND REACTIVATION KINETICS OF A ZSM-5 ZEOLITE BASED CATALYST USED FOR THE TRANSFORMATION OF METHANOL INTO HYDROCARBONS. Chemical Engineering Communications, 1999, 176, 43-63.	1.5	15
260	Correlation for Calculating Heat Transfer Coefficient in Conical Spouted Beds. Industrial & Engineering Chemistry Research, 2016, 55, 9524-9532.	1.8	15
261	Fine particle flow pattern and region delimitation in fountain confined conical spouted beds. Journal of Industrial and Engineering Chemistry, 2021, 95, 312-324.	2.9	15
262	Reaction—regeneration cycles in the isomerization of cis-butene and calculation of the reactivation kinetics of a silica—alumina catalyst. Chemical Engineering Science, 1993, 48, 2741-2752.	1.9	14
263	Sand attrition in conical spouted beds. Particuology, 2012, 10, 592-599.	2.0	14
264	A new method to measure fine particle circulation rates in draft tube conical spouted beds. Powder Technology, 2017, 316, 87-91.	2.1	14
265	Kinetic Modeling of the Catalytic Steam Reforming of High-Density Polyethylene Pyrolysis Volatiles. Energy & Fuels, 2017, 31, 12645-12653.	2.5	14
266	MTG Process in a Fixed-Bed Reactor. Operation and Simulation of a Pseudoadiabatic Experimental Unit. Industrial & Engineering Chemistry Research, 2001, 40, 6087-6098.	1.8	13
267	Influence of the particle diameter and density in the gas velocity in jet spouted beds. Chemical Engineering and Processing: Process Intensification, 2005, 44, 153-157.	1.8	13
268	A Note on an Integrated Process of Methane Steam Reforming in Junction with Pressure-Swing Adsorption to Produce Pure Hydrogen: Mathematical Modeling. Industrial & Engineering Chemistry Research, 2015, 54, 12937-12947.	1.8	13
269	Implementation of a borescopic technique in a conical spouted bed for tracking spherical and irregular particles. Chemical Engineering Journal, 2019, 374, 39-48.	6.6	13
270	Drying of particulate materials in draft tube conical spouted beds: Energy analysis. Powder Technology, 2021, 388, 110-121.	2.1	13

#	Article	IF	CITATIONS
271	Continuous drying of fine and ultrafine sands in a fountain confined conical spouted bed. Powder Technology, 2021, 388, 371-379.	2.1	13
272	A model for predicting the performance of a batch fountain confined spouted bed dryer at low and moderate temperatures. Powder Technology, 2022, 405, 117506.	2.1	13
273	Plasma-Catalytic Reforming of Naphthalene and Toluene as Biomass Tar over Honeycomb Catalysts in a Gliding Arc Reactor. ACS Sustainable Chemistry and Engineering, 2022, 10, 8958-8969.	3.2	13
274	MTG Process in a Fluidized Bed with Catalyst Circulation:Â Operation and Simulation of an Experimental Unit. Industrial & Engineering Chemistry Research, 1998, 37, 4222-4230.	1.8	12
275	Spout Geometry in Shallow Spouted Beds. Industrial & Engineering Chemistry Research, 2001, 40, 420-426.	1.8	12
276	Catalytic Pyrolysis of High Density Polyethylene on a HZSM-5 Zeolite Catalyst in a Conical Spouted Bed Reactor. International Journal of Chemical Reactor Engineering, 2007, 5, .	0.6	12
277	Profiling solid volume fraction in a conical bed of dry micrometric particles: Measurements and numerical implementations. Powder Technology, 2011, 212, 181-192.	2.1	12
278	Evaluation of Drag Models for Predicting the Fluidization Behavior of Silver oxide Nanoparticle Agglomerates in a Fluidized Bed. Industrial & Engineering Chemistry Research, 2013, 52, 7569-7578.	1.8	12
279	Comparison of artificial neural networks with empirical correlations for estimating the average cycle time in conical spouted beds. Particuology, 2019, 42, 48-57.	2.0	12
280	Coupling gas flow pattern and kinetics for tyre pyrolysis modelling. Chemical Engineering Science, 2019, 201, 362-372.	1.9	12
281	Activity and stability of different Fe loaded primary catalysts for tar elimination. Fuel, 2022, 317, 123457.	3.4	12
282	Water sorption isotherms of roasted coffee and coffee roasted with sugar. International Journal of Food Science and Technology, 1999, 34, 287-290.	1.3	11
283	Energetic Viability of a Polyolefin Pyrolysis Plant. Energy & Fuels, 2018, 32, 3751-3759.	2.5	11
284	Effect of operating conditions on the drying of fine and ultrafine sand in a fountain confined conical spouted bed. Drying Technology, 2020, 38, 1446-1461.	1.7	11
285	Minimum spouting velocity of fine particles in fountain confined conical spouted beds. Powder Technology, 2020, 374, 597-608.	2.1	11
286	Influence of restitution and friction coefficients on the velocity field of polydisperse TiO2 agglomerates in a conical fluidized bed by the adhesive CFD-DEM simulation. Powder Technology, 2021, 386, 491-504.	2.1	11
287	Selective kinetic deactivation model for a triangular reaction scheme. Chemical Engineering Science, 1993, 48, 2273-2282.	1.9	10
288	Optimization of temperature-time sequences in reaction-regeneration cycles. Application to the isomerization of cis-butene. Industrial & amp; Engineering Chemistry Research, 1993, 32, 2542-2547.	1.8	10

#	Article	IF	CITATIONS
289	Application of a solute transport model under variable velocity conditions in a conduit flow aquifer: Olalde karst system, Basque Country, Spain. Environmental Geology, 1997, 30, 143-151.	1.2	10
290	Minimum Spouting Velocity of Draft Tube Conical Spouted Beds Using the Neural Network Approach. Chemical Engineering and Technology, 2017, 40, 1132-1139.	0.9	10
291	Correlations for calculating peak and spouting pressure drops in conical spouted beds of biomass. Journal of the Taiwan Institute of Chemical Engineers, 2017, 80, 678-685.	2.7	10
292	Effect of operating conditions on the hydrodynamics in fountain confined conical spouted beds. Journal of the Taiwan Institute of Chemical Engineers, 2021, 123, 1-10.	2.7	10
293	Kinetic study of the regeneration of solid catalysts under internal diffusion restrictions. The Chemical Engineering Journal, 1987, 35, 115-122.	0.4	9
294	Gas Flow Dispersion in Jet-Spouted Beds. Effect of Geometric Factors and Operating Conditions. Industrial & Engineering Chemistry Research, 1994, 33, 3267-3273.	1.8	9
295	Kinetic modelling for selective deactivation in the skeletal isomerization of n-butenes. Chemical Engineering Science, 1997, 52, 2829-2835.	1.9	9
296	Valorization of the Blends Polystyrene/Light Cycle Oil and Polystyreneâ^'Butadiene/Light Cycle Oil over Different HY Zeolites under FCC Unit Conditions. Energy & Fuels, 2004, 18, 218-227.	2.5	9
297	Imaging the Profiles of Deactivating Species on the Catalyst used for the Cracking of Waste Polyethylene by Combined Microscopies. ChemCatChem, 2012, 4, 631-635.	1.8	9
298	Development of a dual conical spouted bed system for heat integration purposes. Powder Technology, 2014, 268, 261-268.	2.1	9
299	Effect of Crushed Glass on Skid Resistance, Moisture Sensitivity and Resilient Modulus of Hot Mix Asphalt. Arabian Journal for Science and Engineering, 2019, 44, 4575-4585.	1.7	9
300	Distribution of Cycle Times in Sawdust Conical Spouted Bed Equipped with Fountain Confiner and Draft Tube. Industrial & Engineering Chemistry Research, 2019, 58, 1932-1940.	1.8	9
301	Effect of the Solid Inlet Design on the Continuous Drying of Fine and Ultrafine Sand in a Fountain Confined Conical Spouted Bed. Industrial & Engineering Chemistry Research, 2020, 59, 9233-9241.	1.8	9
302	Catalytic pyrolysis of date palm seeds on HZSM-5 and dolomite in a pyroprobe reactor in line with GC/MS. Biomass Conversion and Biorefinery, 2024, 14, 2799-2818.	2.9	9
303	Kinetic behaviour of commercial catalysts for methane reforming in ethanol steam reforming process. Journal of Energy Chemistry, 2014, 23, 639-644.	7.1	8
304	Design Factors in Fountain Confined Conical Spouted Beds. Chemical Engineering and Processing: Process Intensification, 2020, 155, 108062.	1.8	8
305	Bed symmetry in the fountain confined conical spouted beds with open-sided draft tubes. Powder Technology, 2022, 399, 117011.	2.1	8
306	An analysis of hydrogen production potential through the in-line oxidative steam reforming of different pyrolysis volatiles. Journal of Analytical and Applied Pyrolysis, 2022, 163, 105482.	2.6	8

#	Article	IF	CITATIONS
307	Polymerization of gaseous benzyl alcohol. 2. Kinetic study of the polymerization and of the deactivation for a silica/alumina catalyst. Industrial & Engineering Chemistry Research, 1987, 26, 1960-1965.	1.8	7
308	Polymerization of gaseous benzyl alcohol. 1. Study of silica/alumina catalysts and reaction conditions. Industrial & Engineering Chemistry Research, 1987, 26, 1956-1960.	1.8	7
309	Optimization of the preparation of a catalyst under deactivation. 2. Application to the operation in reaction-regeneration cycles. Industrial & Engineering Chemistry Research, 1989, 28, 1299-1303.	1.8	7
310	Gas flow distribution modelling in conical spouted beds. Computer Aided Chemical Engineering, 2005, , 613-618.	0.3	7
311	Spout Geometry in Shallow Spouted Beds with Solids of Different Density and Different Sphericity. Industrial & Engineering Chemistry Research, 2005, 44, 8393-8400.	1.8	7
312	Implementation of industrial health and safety in chemical engineering teaching laboratories. Journal of Chemical Health and Safety, 2006, 13, 19-23.	1.1	7
313	Joint Transformation of Methanol and n-Butane into Olefins on an HZSM-5 Zeolite Catalyst in Reaction–Regeneration Cycles. Industrial & Engineering Chemistry Research, 2012, 51, 13073-13084.	1.8	7
314	Mathematical model and energy analysis of ethane dehydration in two-layer packed-bed adsorption. Particuology, 2019, 47, 33-40.	2.0	7
315	Elutriation, attrition and segregation in a conical spouted bed with a fountain confiner. Particuology, 2020, 51, 35-44.	2.0	7
316	Polymerization of gaseous benzyl alcohol. 3. Deactivation mechanism of silica/alumina catalyst. Industrial & Engineering Chemistry Research, 1989, 28, 1752-1756.	1.8	6
317	Temperature vs. time sequences to palliate deactivation in parallel and in series-parallel with the main reaction: parametric study. The Chemical Engineering Journal, 1993, 51, 167-176.	0.4	6
318	Fountain Geometry of Beds Consisting of Plastic Wastes in Shallow Spouted Beds. Industrial & Engineering Chemistry Research, 2008, 47, 6228-6238.	1.8	6
319	Prediction of pressure drop and minimum spouting velocity in draft tube conical spouted beds using genetic programming approach. Canadian Journal of Chemical Engineering, 2020, 98, 583-589.	0.9	6
320	Estimation of the minimum spouting velocity based on pressure fluctuation analysis. Journal of the Taiwan Institute of Chemical Engineers, 2020, 113, 56-65.	2.7	6
321	Synergy in the Cocracking under FCC Conditions of a Phenolic Compound in the Bio-oil and a Model Compound for Vacuum Gasoil. Industrial & Engineering Chemistry Research, 2020, 59, 8145-8154.	1.8	6
322	Assessment of pressure drop in conical spouted beds of biomass by artificial neural networks and comparison with empirical correlations. Particuology, 2022, 70, 1-9.	2.0	6
323	Characterization of flow and transport dynamics in karst aquifers by analyzing tracer test results in conduits and recharge areas (the Egino Massif, Basque Country, Spain): environmental and management implications. Environmental Earth Sciences, 2018, 77, 1.	1.3	5
324	Evaluation of elastic and inelastic contact forces in the flow regimes of Titania nanoparticle agglomerates in a bench-scale conical fluidized bed: A comparative study of CFD-DEM simulation and experimental data. Chemical Engineering Research and Design, 2021, 176, 34-48.	2.7	5

#	Article	IF	CITATIONS
325	Draft tube design based on a borescopic technique in conical spouted beds. Advanced Powder Technology, 2021, 32, 4420-4431.	2.0	5
326	Valorization of Polyolefin/LCO Blend over HZSM-5 Zeolites. International Journal of Chemical Reactor Engineering, 2002, 1, .	0.6	4
327	Conical spouted beds. , 0, , 82-104.		4
328	Empirical Correlation for Calculating the Pressure Drop in Microhydrocyclones. Industrial & Engineering Chemistry Research, 2018, 57, 14202-14212.	1.8	4
329	Waste Plastics Valorization by Fast Pyrolysis and in Line Catalytic Steam Reforming for Hydrogen Production. , 2020, , .		4
330	Deactivation Kinetic Model in Catalytic PolymerizationsTaking into Account the Initiation Step. Industrial & Engineering Chemistry Research, 1996, 35, 62-69.	1.8	3
331	Characterization of the Liquid Obtained in Tyre Pyrolysis in a Conical Spouted Bed Reactor. International Journal of Chemical Reactor Engineering, 2007, 5, .	0.6	3
332	Pyrolysis of Polyolefins in a Conical Spouted Bed Reactor: A Way to Obtain Valuable Products. , 0, , .		3
333	Multipleâ€Output Artificial Neural Network to Estimate Solid Cycle Times in Conical Spouted Beds. Chemical Engineering and Technology, 2021, 44, 542-550.	0.9	3
334	Bio-oil production. , 2018, , 173-202.		3
335	A First Approach to CFD Simulation of Hydrodynamic Behaviour in a Conical Spouted Bed Contactor. International Journal of Chemical Reactor Engineering, 2008, 6, .	0.6	2
336	Influence of Boundary Conditions on CFD Simulation of Gas- particle Hydrodynamics in a Conical Fluidized Bed Unit. International Journal of Chemical Reactor Engineering, 2009, 7, .	0.6	2
337	Two-Dimensional Mathematical Model for Flue Gas Desulfurization in a Spray Column at Low Temperatures with Seawater: Design and Optimization. Energy & Fuels, 2016, 30, 3347-3354.	2.5	2
338	Relationship between surface acidity and activity of catalysts in the transformation of methanol into hydrocarbons. , 1996, 65, 186.		2
339	Operation strategies for the regeneration section of catalytic cracking units. Studies in Surface Science and Catalysis, 1999, 126, 281-288.	1.5	1
340	Solid Velocity in Shallow Spouted Beds Consisting of Solids of Varying Density. International Journal of Chemical Reactor Engineering, 2007, 5, .	0.6	1
341	Efecto del uso de Catalizadores Ãcidos Sobre la Distribución de Productos en la Pirólisis de Neumáticos. Informacion Tecnologica (discontinued), 2010, 21, .	0.1	1
342	Contribution to the Design of an Adiabatic Fixed Bed Reactor for the MTG Process under Reaction-regeneration Cycles. Studies in Surface Science and Catalysis, 2001, 139, 319-326.	1.5	0

#	Article	IF	CITATIONS
343	Reply to "A correction on one-dimensional modelling of conical spouted bedsâ€; published in Chem. Eng. Process. 48 (2009) 1264–1269. Chemical Engineering and Processing: Process Intensification, 2013, 70, 292.	1.8	0
344	Development of the Conical Spouted Bed Technology for Biomass and Waste Plastic Gasification. , 0, , .		0
345	Selective production of light olefins and hydrogen from waste plastics by pyrolysis and in-line transformation. , 2021, , 265-289.		0
346	Poliolefinen pirolisia iturri-ohantze konikoan. Ekaia (journal), 2016, , 125-143.	0.0	0
347	Olefina arinen ekoizpena hondakin plastikoetatik. Ekaia (journal), 2017, , .	0.0	0
348	Modelling batch drying of fine sand in a fountain confined conical spouted bed. , 0, , .		0