Martin Olazar

List of Publications by Citations

Source: https://exaly.com/author-pdf/5143663/martin-olazar-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

 341
 15,532
 74
 104

 papers
 citations
 h-index
 g-index

 350
 17,879
 6
 6.86

 ext. papers
 ext. citations
 avg, IF
 L-index

#	Paper	IF	Citations
341	Thermochemical routes for the valorization of waste polyolefinic plastics to produce fuels and chemicals. A review. <i>Renewable and Sustainable Energy Reviews</i> , 2017 , 73, 346-368	16.2	335
340	Transformation of Oxygenate Components of Biomass Pyrolysis Oil on a HZSM-5 Zeolite. II. Aldehydes, Ketones, and Acids. <i>Industrial & Engineering Chemistry Research</i> , 2004 , 43, 2619-2626	3.9	325
339	Recent advances in the gasification of waste plastics. A critical overview. <i>Renewable and Sustainable Energy Reviews</i> , 2018 , 82, 576-596	16.2	288
338	Influence of temperature on biomass pyrolysis in a conical spouted bed reactor. <i>Resources, Conservation and Recycling</i> , 2012 , 59, 23-31	11.9	226
337	Evaluation of thermochemical routes for hydrogen production from biomass: A review. <i>Energy Conversion and Management</i> , 2018 , 165, 696-719	10.6	217
336	Bio-oil production from rice husk fast pyrolysis in a conical spouted bed reactor. Fuel, 2014, 128, 162-16	697.1	211
335	Stable operation conditions for gas-solid contact regimes in conical spouted beds. <i>Industrial & Engineering Chemistry Research</i> , 1992 , 31, 1784-1792	3.9	185
334	Pyrolysis of sawdust in a conical spouted-bed reactor with a HZSM-5 catalyst. <i>AICHE Journal</i> , 2000 , 46, 1025-1033	3.6	178
333	Kinetic study of lignocellulosic biomass oxidative pyrolysis. <i>Fuel</i> , 2012 , 95, 305-311	7.1	168
332	Pyrolysis of Sawdust in a Conical Spouted Bed Reactor. Yields and Product Composition. <i>Industrial & Engineering Chemistry Research</i> , 2000 , 39, 1925-1933	3.9	162
331	Insights into the coke deposited on HZSM-5, Hand HY zeolites during the cracking of polyethylene. <i>Applied Catalysis B: Environmental</i> , 2011 , 104, 91-100	21.8	160
330	Deactivating species in the transformation of crude bio-oil with methanol into hydrocarbons on a HZSM-5 catalyst. <i>Journal of Catalysis</i> , 2012 , 285, 304-314	7.3	154
329	Role of acidity and microporous structure in alternative catalysts for the transformation of methanol into olefins. <i>Applied Catalysis A: General</i> , 2005 , 283, 197-207	5.1	150
328	Selective Production of Aromatics by Crude Bio-oil Valorization with a Nickel-Modified HZSM-5 Zeolite Catalyst. <i>Energy & Double Catalyst. Energy & </i>	4.1	149
327	Continuous pyrolysis of waste tyres in a conical spouted bed reactor. <i>Fuel</i> , 2010 , 89, 1946-1952	7.1	148
326	Sewage sludge valorization by flash pyrolysis in a conical spouted bed reactor. <i>Chemical Engineering Journal</i> , 2015 , 273, 173-183	14.7	139
325	Kinetic Modeling of Dimethyl Ether Synthesis in a Single Step on a CuOInOIAl2O3/FAl2O3 Catalyst. <i>Industrial & Engineering Chemistry Research</i> , 2007 , 46, 5522-5530	3.9	139

(2012-2005)

324	Deactivation and regeneration of hybrid catalysts in the single-step synthesis of dimethyl ether from syngas and CO2. <i>Catalysis Today</i> , 2005 , 106, 265-270	5.3	139
323	Hydrogen production from biomass and plastic mixtures by pyrolysis-gasification. <i>International Journal of Hydrogen Energy</i> , 2014 , 39, 10883-10891	6.7	138
322	Opportunities and barriers for producing high quality fuels from the pyrolysis of scrap tires. Renewable and Sustainable Energy Reviews, 2016 , 56, 745-759	16.2	137
321	Catalytic pyrolysis of HDPE in continuous mode over zeolite catalysts in a conical spouted bed reactor. <i>Journal of Analytical and Applied Pyrolysis</i> , 2009 , 85, 345-351	6	137
320	Fast co-pyrolysis of sewage sludge and lignocellulosic biomass in a conical spouted bed reactor. <i>Fuel</i> , 2015 , 159, 810-818	7.1	134
319	Design and operation of a conical spouted bed reactor pilot plant (25kg/h) for biomass fast pyrolysis. <i>Fuel Processing Technology</i> , 2013 , 112, 48-56	7.2	129
318	Influence of operating conditions on the steam gasification of biomass in a conical spouted bed reactor. <i>Chemical Engineering Journal</i> , 2014 , 237, 259-267	14.7	121
317	Characterization of the waxes obtained by the pyrolysis of polyolefin plastics in a conical spouted bed reactor. <i>Journal of Analytical and Applied Pyrolysis</i> , 2012 , 94, 230-237	6	121
316	Fast characterization of biomass fuels by thermogravimetric analysis (TGA). Fuel, 2015, 140, 744-751	7.1	120
315	Role of pore structure in the deactivation of zeolites (HZSM-5, Hand HY) by coke in the pyrolysis of polyethylene in a conical spouted bed reactor. <i>Applied Catalysis B: Environmental</i> , 2011 , 102, 224-231	21.8	119
314	Wax Formation in the Pyrolysis of Polyolefins in a Conical Spouted Bed Reactor. <i>Energy & amp; Fuels</i> , 2002 , 16, 1429-1437	4.1	112
313	Steam reforming of different biomass tar model compounds over Ni/Al2O3 catalysts. <i>Energy Conversion and Management</i> , 2017 , 136, 119-126	10.6	111
312	Olefin Production by Catalytic Transformation of Crude Bio-Oil in a Two-Step Process. <i>Industrial & Engineering Chemistry Research</i> , 2010 , 49, 123-131	3.9	111
311	Kinetic Description of the Catalytic Pyrolysis of Biomass in a Conical Spouted Bed Reactor. <i>Energy & Energy Energy</i> 2005, 19, 765-774	4.1	110
310	Upgrading the rice husk char obtained by flash pyrolysis for the production of amorphous silica and high quality activated carbon. <i>Bioresource Technology</i> , 2014 , 170, 132-137	11	108
309	Catalyst Deactivation by Coke in the Transformation of Aqueous Ethanol into Hydrocarbons. Kinetic Modeling and Acidity Deterioration of the Catalyst. <i>Industrial & Engineering Chemistry Research</i> , 2002 , 41, 4216-4224	3.9	107
308	Biomass Oxidative Flash Pyrolysis: Autothermal Operation, Yields and Product Properties. <i>Energy & Emp; Fuels</i> , 2012 , 26, 1353-1362	4.1	105
307	Light olefins from HDPE cracking in a two-step thermal and catalytic process. <i>Chemical Engineering Journal</i> , 2012 , 207-208, 27-34	14.7	105

306	Adsorption of Amido Black 10B from aqueous solution using polyaniline/SiO nanocomposite: Experimental investigation and artificial neural network modeling. <i>Journal of Colloid and Interface Science</i> , 2018 , 510, 246-261	9.3	104
305	Syngas from steam gasification of polyethylene in a conical spouted bed reactor. Fuel, 2013, 109, 461-	46 9 .1	103
304	Cracking of High Density Polyethylene Pyrolysis Waxes on HZSM-5 Catalysts of Different Acidity. <i>Industrial & Engineering Chemistry Research</i> , 2013 , 52, 10637-10645	3.9	103
303	Product Yields and Compositions in the Continuous Pyrolysis of High-Density Polyethylene in a Conical Spouted Bed Reactor. <i>Industrial & Engineering Chemistry Research</i> , 2011 , 50, 6650-6659	3.9	100
302	Kinetics of the irreversible deactivation of the HZSM-5 catalyst in the MTO process. <i>Chemical Engineering Science</i> , 2003 , 58, 5239-5249	4.4	100
301	Waste truck-tyre processing by flash pyrolysis in a conical spouted bed reactor. <i>Energy Conversion and Management</i> , 2017 , 142, 523-532	10.6	99
300	Steam reforming of phenol as biomass tar model compound over Ni/Al2O3 catalyst. <i>Fuel</i> , 2016 , 184, 629-636	7.1	99
299	Product distribution obtained in the pyrolysis of tyres in a conical spouted bed reactor. <i>Chemical Engineering Science</i> , 2007 , 62, 5271-5275	4.4	97
298	Artificial neural network optimization for methyl orange adsorption onto polyaniline nano-adsorbent: Kinetic, isotherm and thermodynamic studies. <i>Journal of Molecular Liquids</i> , 2017 , 244, 189-200	6	94
297	Styrene recovery from polystyrene by flash pyrolysis in a conical spouted bed reactor. <i>Waste Management</i> , 2015 , 45, 126-33	8.6	93
296	Coking and sintering progress of a Ni supported catalyst in the steam reforming of biomass pyrolysis volatiles. <i>Applied Catalysis B: Environmental</i> , 2018 , 233, 289-300	21.8	93
295	Influence of Tire Formulation on the Products of Continuous Pyrolysis in a Conical Spouted Bed Reactor. <i>Energy & Double Spouted Bed Reactor</i> .	4.1	92
294	Deposition and Characteristics of Coke over a H-ZSM5 Zeolite-Based Catalyst in the MTG Process. <i>Industrial & Engineering Chemistry Research</i> , 1996 , 35, 3991-3998	3.9	92
293	Operating Conditions for the Pyrolysis of Poly-(ethylene terephthalate) in a Conical Spouted-Bed Reactor. <i>Industrial & Engineering Chemistry Research</i> , 2010 , 49, 2064-2069	3.9	90
292	Transformation of Several Plastic Wastes into Fuels by Catalytic Cracking. <i>Industrial & Engineering Chemistry Research</i> , 1997 , 36, 4523-4529	3.9	90
291	Deactivation of a CuOInOIAl2O3/EAl2O3 Catalyst in the Synthesis of Dimethyl Ether. <i>Industrial & Emp; Engineering Chemistry Research</i> , 2008 , 47, 2238-2247	3.9	89
290	Characterization of the bio-oil obtained by fast pyrolysis of sewage sludge in a conical spouted bed reactor. <i>Fuel Processing Technology</i> , 2016 , 149, 169-175	7.2	87
289	Kinetic modelling of dimethyl ether synthesis from (H2 + CO2) by considering catalyst deactivation. <i>Chemical Engineering Journal</i> , 2011 , 174, 660-667	14.7	86

(2009-2011)

288	Investigations on heat transfer and hydrodynamics under pyrolysis conditions of a pilot-plant draft tube conical spouted bed reactor. <i>Chemical Engineering and Processing: Process Intensification</i> , 2011 , 50, 790-798	3.7	86
287	Hydrothermal stability of HZSM-5 catalysts modified with Ni for the transformation of bioethanol into hydrocarbons. <i>Fuel</i> , 2010 , 89, 3365-3372	7.1	86
286	Waste tyre valorization by catalytic pyrolysis 🖪 review. <i>Renewable and Sustainable Energy Reviews</i> , 2020 , 129, 109932	16.2	85
285	Defluidization modelling of pyrolysis of plastics in a conical spouted bed reactor. <i>Chemical Engineering and Processing: Process Intensification</i> , 2005 , 44, 231-235	3.7	85
284	Valorisation of different waste plastics by pyrolysis and in-line catalytic steam reforming for hydrogen production. <i>Energy Conversion and Management</i> , 2018 , 156, 575-584	10.6	85
283	Hydrogen production from biomass by continuous fast pyrolysis and in-line steam reforming. <i>RSC Advances</i> , 2016 , 6, 25975-25985	3.7	84
282	Stability and hydrodynamics of conical spouted beds with binary mixtures. <i>Industrial & amp;</i> Engineering Chemistry Research, 1993 , 32, 2826-2834	3.9	83
281	Effect of polyethylene co-feeding in the steam gasification of biomass in a conical spouted bed reactor. <i>Fuel</i> , 2015 , 153, 393-401	7.1	82
280	Steam gasification of biomass in a conical spouted bed reactor with olivine and Falumina as primary catalysts. <i>Fuel Processing Technology</i> , 2013 , 116, 292-299	7.2	82
279	Role of water in the kinetic modeling of catalyst deactivation in the MTG process. <i>AICHE Journal</i> , 2002 , 48, 1561-1571	3.6	82
278	Modified HZSM-5 zeolites for intensifying propylene production in the transformation of 1-butene. <i>Chemical Engineering Journal</i> , 2014 , 251, 80-91	14.7	80
277	Attenuation of Catalyst Deactivation by Cofeeding Methanol for Enhancing the Valorisation of Crude Bio-oil. <i>Energy & Description</i> 23, 4129-4136	4.1	80
276	Production of Light Olefins from Polyethylene in a Two-Step Process: Pyrolysis in a Conical Spouted Bed and Downstream High-Temperature Thermal Cracking. <i>Industrial & Discourse Chemistry Research</i> , 2012 , 51, 13915-13923	3.9	79
275	Kinetic Study of Polyolefin Pyrolysis in a Conical Spouted Bed Reactor. <i>Industrial & Engineering Chemistry Research</i> , 2002 , 41, 4559-4566	3.9	79
274	A sequential process for hydrogen production based on continuous HDPE fast pyrolysis and in-line steam reforming. <i>Chemical Engineering Journal</i> , 2016 , 296, 191-198	14.7	78
273	Vacuum Pyrolysis of Waste Tires by Continuously Feeding into a Conical Spouted Bed Reactor. <i>Industrial & Discourse Engineering Chemistry Research</i> , 2010 , 49, 8990-8997	3.9	78
272	Hydrogen-rich gas production by continuous pyrolysis and in-line catalytic reforming of pine wood waste and HDPE mixtures. <i>Energy Conversion and Management</i> , 2017 , 136, 192-201	10.6	77
271	Influence of FCC catalyst steaming on HDPE pyrolysis product distribution. <i>Journal of Analytical and Applied Pyrolysis</i> , 2009 , 85, 359-365	6	77

270	Effect of Si/Al ratio and of acidity of H-ZSM5 zeolites on the primary products of methanol to gasoline conversion. <i>Journal of Chemical Technology and Biotechnology</i> , 1996 , 66, 183-191	3.5	77
269	Segregation in Conical Spouted Beds with Binary and Ternary Mixtures of Equidensity Spherical Particles. <i>Industrial & Engineering Chemistry Research</i> , 1994 , 33, 1838-1844	3.9	75
268	Pressure drop in conical spouted beds. <i>The Chemical Engineering Journal</i> , 1993 , 51, 53-60		75
267	Steam reforming of raw bio-oil over Ni/La2O3-Al2O3: Influence of temperature on product yields and catalyst deactivation. <i>Fuel</i> , 2018 , 216, 463-474	7.1	73
266	Novel NiMgAlfa catalyst for enhanced hydrogen production for the pyrolysisgasification of a biomass/plastic mixture. <i>Journal of Analytical and Applied Pyrolysis</i> , 2015 , 113, 15-21	6	73
265	Solid cross-flow into the spout and particle trajectories in conical spouted beds. <i>Chemical Engineering Science</i> , 1998 , 53, 3561-3570	4.4	73
264	Catalyst Effect on the Composition of Tire Pyrolysis Products. Energy & Catalyst Effect on the Composition of Tire Pyrolysis Products. Energy & Catalyst Effect on the Composition of Tire Pyrolysis Products. Energy & Catalyst Effect on the Composition of Tire Pyrolysis Products.	4.1	73
263	Valorization of citrus wastes by fast pyrolysis in a conical spouted bed reactor. <i>Fuel</i> , 2018 , 224, 111-120	7.1	72
262	Design factors of conical spouted beds and jet spouted beds. <i>Industrial & Design Research</i> , 1993 , 32, 1245-1250	3.9	72
261	Physical Activation of Rice Husk Pyrolysis Char for the Production of High Surface Area Activated Carbons. <i>Industrial & Discourse amp; Engineering Chemistry Research</i> , 2015 , 54, 7241-7250	3.9	71
2 60	Effect of Vacuum on Lignocellulosic Biomass Flash Pyrolysis in a Conical Spouted Bed Reactor. <i>Energy & Double Spouted Bed Reactor Energy & Doub</i>	4.1	71
259	Kinetics of scrap tyre pyrolysis under vacuum conditions. Waste Management, 2009 , 29, 2649-55	8.6	70
258	Evaluation of the properties of tyre pyrolysis oils obtained in a conical spouted bed reactor. <i>Energy</i> , 2017 , 128, 463-474	7.9	69
257	Continuous Polyolefin Cracking on an HZSM-5 Zeolite Catalyst in a Conical Spouted Bed Reactor. <i>Industrial & Engineering Chemistry Research</i> , 2011 , 50, 6061-6070	3.9	69
256	Effect of operating conditions on solid velocity in the spout, annulus and fountain of spouted beds. <i>Chemical Engineering Science</i> , 2001 , 56, 3585-3594	4.4	69
255	Stability of different Ni supported catalysts in the in-line steam reforming of biomass fast pyrolysis volatiles. <i>Applied Catalysis B: Environmental</i> , 2019 , 242, 109-120	21.8	69
254	Identification of the coke deposited on an HZSM-5 zeolite catalyst during the sequenced pyrolysis@racking of HDPE. <i>Applied Catalysis B: Environmental</i> , 2014 , 148-149, 436-445	21.8	68
253	Steam activation of pyrolytic tyre char at different temperatures. <i>Journal of Analytical and Applied Pyrolysis</i> , 2009 , 85, 539-543	6	68

(2012-2019)

252	Improving bio-oil properties through the fast co-pyrolysis of lignocellulosic biomass and waste tyres. <i>Waste Management</i> , 2019 , 85, 385-395	8.6	67	
251	Relationship between surface acidity and activity of catalysts in the transformation of methanol into hydrocarbons. <i>Journal of Chemical Technology and Biotechnology</i> , 1996 , 65, 186-192	3.5	66	
250	Performance of a conical spouted bed pilot plant for bio-oil production by poplar flash pyrolysis. <i>Fuel Processing Technology</i> , 2015 , 137, 283-289	7.2	65	
249	Hydrodynamics of Sawdust and Mixtures of Wood Residues in Conical Spouted Beds. <i>Industrial & Engineering Chemistry Research</i> , 1994 , 33, 993-1000	3.9	65	
248	Deactivation dynamics of a Ni supported catalyst during the steam reforming of volatiles from waste polyethylene pyrolysis. <i>Applied Catalysis B: Environmental</i> , 2017 , 209, 554-565	21.8	64	
247	Kinetic modelling for the transformation of bioethanol into olefins on a hydrothermally stable NiBZSM-5 catalyst considering the deactivation by coke. <i>Chemical Engineering Journal</i> , 2011 , 167, 262-2	27 ⁷ 4·7	64	
246	Catalyst deactivation by coking in the MTG process in fixed and fluidized bed reactors. <i>Catalysis Today</i> , 1997 , 37, 239-248	5.3	63	
245	Measurement of Particle Velocities in Conical Spouted Beds Using an Optical Fiber Probe. <i>Industrial & Engineering Chemistry Research</i> , 1998 , 37, 4520-4527	3.9	63	
244	Influence of the support on Ni catalysts performance in the in-line steam reforming of biomass fast pyrolysis derived volatiles. <i>Applied Catalysis B: Environmental</i> , 2018 , 229, 105-113	21.8	62	
243	Design of Conical Spouted Beds for the Handling of Low-Density Solids. <i>Industrial & amp;</i> Engineering Chemistry Research, 2004 , 43, 655-661	3.9	62	
242	Catalytic pyrolysis of high density polyethylene in a conical spouted bed reactor. <i>Journal of Analytical and Applied Pyrolysis</i> , 2007 , 79, 450-455	6	61	
241	HDPE pyrolysis-steam reforming in a tandem spouted bed-fixed bed reactor for H2 production. <i>Journal of Analytical and Applied Pyrolysis</i> , 2015 , 116, 34-41	6	60	
240	Effect of Cofeeding Butane with Methanol on the Deactivation by Coke of a HZSM-5 Zeolite Catalyst. <i>Industrial & Engineering Chemistry Research</i> , 2011 , 50, 9980-9988	3.9	60	
239	Recycling poly-(methyl methacrylate) by pyrolysis in a conical spouted bed reactor. <i>Chemical Engineering and Processing: Process Intensification</i> , 2010 , 49, 1089-1094	3.7	60	
238	Minimum Spouting Velocity of Conical Spouted Beds Equipped with Draft Tubes of Different Configuration. <i>Industrial & Engineering Chemistry Research</i> , 2013 , 52, 2995-3006	3.9	58	
237	HZSM-5 and HY Zeolite Catalyst Performance in the Pyrolysis of Tires in a Conical Spouted Bed Reactor. <i>Industrial & Engineering Chemistry Research</i> , 2008 , 47, 7600-7609	3.9	57	
236	Kinetic Modelling of the Transformation of Aqueous Ethanol into Hydrocarbons on a HZSM-5 Zeolite. <i>Industrial & Description of Engineering Chemistry Research</i> , 2001 , 40, 3467-3474	3.9	57	
235	Pilot scale conical spouted bed pyrolysis reactor: Draft tube selection and hydrodynamic performance. <i>Powder Technology</i> , 2012 , 219, 49-58	5.2	55	

234	Design and Operation of a Catalytic Polymerization Reactor in a Dilute Spouted Bed Regime. <i>Industrial & Dilute Spouted Bed Regime Research</i> , 1997 , 36, 1637-1643	3.9	55
233	Fast pyrolysis of eucalyptus waste in a conical spouted bed reactor. <i>Bioresource Technology</i> , 2015 , 194, 225-32	11	54
232	Correlation for calculation of the gas dispersion coefficient in conical spouted beds. <i>Chemical Engineering Science</i> , 1995 , 50, 2161-2172	4.4	54
231	Assessment of steam gasification kinetics of the char from lignocellulosic biomass in a conical spouted bed reactor. <i>Energy</i> , 2016 , 107, 493-501	7.9	53
230	Improving the DME steam reforming catalyst by alkaline treatment of the HZSM-5 zeolite. <i>Applied Catalysis B: Environmental</i> , 2013 , 130-131, 73-83	21.8	52
229	Upgrading model compounds and Scrap Tires Pyrolysis Oil (STPO) on hydrotreating NiMo catalysts with tailored supports. <i>Fuel</i> , 2015 , 145, 158-169	7.1	52
228	Kinetics of scrap tyre pyrolysis under fast heating conditions. <i>Journal of Analytical and Applied Pyrolysis</i> , 2005 , 73, 290-298	6	52
227	Design and operation of a jet spouted bed reactor with continuous catalyst feed in the benzyl alcohol polymerization. <i>Industrial & Engineering Chemistry Research</i> , 1987 , 26, 1297-1304	3.9	52
226	Flash pyrolysis of forestry residues from the Portuguese Central Inland Region within the framework of the BioREFINA-Ter project. <i>Bioresource Technology</i> , 2013 , 129, 512-8	11	51
225	Pyrolysis and in-line catalytic steam reforming of polystyrene through a two-step reaction system. Journal of Analytical and Applied Pyrolysis, 2016 , 122, 502-510	6	50
224	Role of operating conditions in the catalyst deactivation in the in-line steam reforming of volatiles from biomass fast pyrolysis. <i>Fuel</i> , 2018 , 216, 233-244	7.1	49
223	Effect of the acidity of the HZSM-5 zeolite catalyst on the cracking of high density polyethylene in a conical spouted bed reactor. <i>Applied Catalysis A: General</i> , 2012 , 415-416, 89-95	5.1	49
222	Local Bed Voidage in Conical Spouted Beds. <i>Industrial & Engineering Chemistry Research</i> , 1998 , 37, 2553-2558	3.9	48
221	Role of temperature on gasification performance and tar composition in a fountain enhanced conical spouted bed reactor. <i>Energy Conversion and Management</i> , 2018 , 171, 1589-1597	10.6	47
220	Catalytic Cracking of Waxes Produced by the Fast Pyrolysis of Polyolefins. <i>Energy & Dolyolefins</i> , 2007, 21, 561-569	4.1	45
219	Preliminary studies on fuel production through LCO hydrocracking on noble-metal supported catalysts. <i>Fuel</i> , 2012 , 94, 504-515	7.1	44
218	Kinetic modelling of tyre pyrolysis in a conical spouted bed reactor. <i>Journal of Analytical and Applied Pyrolysis</i> , 2008 , 81, 127-132	6	44
217	Expansion of spouted beds in conical contactors. <i>The Chemical Engineering Journal</i> , 1993 , 51, 45-52		44

(2010-2016)

216	Preparation of adsorbents from sewage sludge pyrolytic char by carbon dioxide activation. <i>Chemical Engineering Research and Design</i> , 2016 , 103, 76-86	5.5	43
215	Fitting performance of artificial neural networks and empirical correlations to estimate higher heating values of biomass. <i>Fuel</i> , 2016 , 180, 377-383	7.1	43
214	CFD simulation of cylindrical spouted beds by the kinetic theory of granular flow. <i>Powder Technology</i> , 2013 , 246, 303-316	5.2	42
213	Kinetic study of fast pyrolysis of sawdust in a conical spouted bed reactor in the range 400B00 °C. Journal of Chemical Technology and Biotechnology, 2001 , 76, 469-476	3.5	42
212	Behaviour of primary catalysts in the biomass steam gasification in a fountain confined spouted bed. <i>Fuel</i> , 2019 , 253, 1446-1456	7.1	41
211	Solute transport modelling in karst conduits with slow zones during different hydrologic conditions. <i>Journal of Hydrology</i> , 2010 , 390, 182-189	6	41
210	Synergies in the production of olefins by combined cracking of n-butane and methanol on a HZSM-5 zeolite catalyst. <i>Chemical Engineering Journal</i> , 2010 , 160, 760-769	14.7	40
209	Predicting travel times and transport characterization in karst conduits by analyzing tracer-breakthrough curves. <i>Journal of Hydrology</i> , 2007 , 334, 183-198	6	40
208	Isotherms of chemical adsorption of bases on solid catalysts for acidity measurement. <i>Journal of Chemical Technology and Biotechnology</i> , 1994 , 60, 141-146	3.5	40
207	Assessment of a conical spouted with an enhanced fountain bed for biomass gasification. <i>Fuel</i> , 2017 , 203, 825-831	7.1	39
206	Polyethylene Cracking on a Spent FCC Catalyst in a Conical Spouted Bed. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 14008-14017	3.9	39
205	Effect of acid catalysts on scrap tyre pyrolysis under fast heating conditions. <i>Journal of Analytical and Applied Pyrolysis</i> , 2008 , 82, 199-204	6	39
204	Spout and Fountain Geometry in Conical Spouted Beds Consisting of Solids of Varying Density. <i>Industrial & Engineering Chemistry Research</i> , 2005 , 44, 193-200	3.9	39
203	Thermal recycling of polystyrene and polystyrene-butadiene dissolved in a light cycle oil. <i>Journal of Analytical and Applied Pyrolysis</i> , 2003 , 70, 747-760	6	39
202	Effect of CeO2 and MgO promoters on the performance of a Ni/Al2O3 catalyst in the steam reforming of biomass pyrolysis volatiles. <i>Fuel Processing Technology</i> , 2020 , 198, 106223	7.2	39
201	Drying of Biomass in a Conical Spouted Bed with Different Types of Internal Devices. <i>Drying Technology</i> , 2012 , 30, 207-216	2.6	38
200	Olefin production by cofeeding methanol and n-butane: Kinetic modeling considering the deactivation of HZSM-5 zeolite. <i>AICHE Journal</i> , 2011 , 57, 2841-2853	3.6	38
199	Deactivation Kinetics for Direct Dimethyl Ether Synthesis on a CuOanOAl2O3/FAl2O3 Catalyst. Industrial & amp; Engineering Chemistry Research, 2010, 49, 481-489	3.9	38

198	Study of Local Properties in Conical Spouted Beds Using an Optical Fiber Probe. <i>Industrial & Engineering Chemistry Research</i> , 1995 , 34, 4033-4039	3.9	38
197	Regeneration of a catalyst based on a SAPO-34 used in the transformation of methanol into olefins. Journal of Chemical Technology and Biotechnology, 1999 , 74, 1082-1088	3.5	37
196	Evolution of biomass char features and their role in the reactivity during steam gasification in a conical spouted bed reactor. <i>Energy Conversion and Management</i> , 2019 , 181, 214-222	10.6	36
195	Hydrogen Production by High Density Polyethylene Steam Gasification and In-Line Volatile Reforming. <i>Industrial & Engineering Chemistry Research</i> , 2015 , 54, 9536-9544	3.9	35
194	Catalyst discrimination for olefin production by coupled methanol/n-butane cracking. <i>Applied Catalysis A: General</i> , 2010 , 383, 202-210	5.1	35
193	Advantages of confining the fountain in a conical spouted bed reactor for biomass steam gasification. <i>Energy</i> , 2018 , 153, 455-463	7.9	34
192	Modifications in the HZSM-5 zeolite for the selective transformation of ethylene into propylene. <i>Applied Catalysis A: General</i> , 2014 , 479, 17-25	5.1	34
191	Causes of deactivation of bifunctional catalysts made up of CuO-ZnO-Al2O3 and desilicated HZSM-5 zeolite in DME steam reforming. <i>Applied Catalysis A: General</i> , 2014 , 483, 76-84	5.1	34
190	Effect of space velocity on the hydrocracking of Light Cycle Oil over a PtPd/HY zeolite catalyst. <i>Fuel Processing Technology</i> , 2012 , 95, 8-15	7.2	34
189	Calculation of the kinetics of deactivation by coke in an integral reactor for a triangular scheme reaction. <i>Chemical Engineering Science</i> , 1993 , 48, 1077-1087	4.4	34
188	Prospects for Obtaining High Quality Fuels from the Hydrocracking of a Hydrotreated Scrap Tires Pyrolysis Oil. <i>Energy & Discounty of the Hydrocracking of t</i>	4.1	33
187	Acidity deterioration and coke deposition in a HZSM5 zeolite in the MTG process. <i>Studies in Surface Science and Catalysis</i> , 1994 , 88, 567-572	1.8	33
186	Waste Refinery: The Valorization of Waste Plastics and End-of-Life Tires in Refinery Units. A Review <i>Energy & Documents</i> , 2021, 35, 3529-3557	4.1	33
185	Steam reforming of plastic pyrolysis model hydrocarbons and catalyst deactivation. <i>Applied Catalysis A: General</i> , 2016 , 527, 152-160	5.1	32
184	Kinetic Model for the Transformation of 1-Butene on a K-Modified HZSM-5 Catalyst. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 10599-10607	3.9	32
183	Operating and Peak Pressure Drops in Conical Spouted Beds Equipped with Draft Tubes of Different Configuration. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 415-427	3.9	32
182	Product distribution modelling in the thermal pyrolysis of high density polyethylene. <i>Journal of Hazardous Materials</i> , 2007 , 144, 708-14	12.8	32
181	Pyrolysis kinetics of forestry residues from the Portuguese Central Inland Region. <i>Chemical Engineering Research and Design</i> , 2013 , 91, 2682-2690	5.5	31

(2006-2020)

180	Effect of La2O3 promotion on a Ni/Al2O3 catalyst for H2 production in the in-line biomass pyrolysis-reforming. <i>Fuel</i> , 2020 , 262, 116593	7.1	31	
179	Kinetic Study of Carbon Dioxide Gasification of Rice Husk Fast Pyrolysis Char. <i>Energy & amp; Fuels</i> , 2015 , 29, 3198-3207	4.1	30	
178	CFD study of particle velocity profiles inside a draft tube in a cylindrical spouted bed with conical base. <i>Journal of the Taiwan Institute of Chemical Engineers</i> , 2014 , 45, 2140-2149	5.3	30	•
177	Kinetic behaviour of catalysts with different CuO-ZnO-Al2O3 metallic function compositions in DME steam reforming in a fluidized bed. <i>Applied Catalysis B: Environmental</i> , 2013 , 142-143, 315-322	21.8	30	
176	Effect of combining metallic and acid functions in CZA/HZSM-5 desilicated zeolite catalysts on the DME steam reforming in a fluidized bed. <i>International Journal of Hydrogen Energy</i> , 2013 , 38, 10019-1002	<u>8</u> .7	30	
175	Particle Cycle Times and Solid Circulation Rates in Conical Spouted Beds with Draft Tubes of Different Configuration. <i>Industrial & Engineering Chemistry Research</i> , 2013 , 52, 15959-15967	3.9	30	
174	HZSM-5 Zeolite As Catalyst Additive for Residue Cracking under FCC Conditions. <i>Energy & amp; Fuels</i> , 2009 , 23, 4215-4223	4.1	30	
173	Local porosity in conical spouted beds consisting of solids of varying density. <i>Chemical Engineering Science</i> , 2005 , 60, 2017-2025	4.4	30	
172	Intensifying Propylene Production by 1-Butene Transformation on a K Modified HZSM-5 Zeolite-Catalyst. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 4614-4622	3.9	29	
171	Operating Conditions of Conical Spouted Beds with a Draft Tube. Effect of the Diameter of the Draft Tube and of the Height of Entrainment Zone. <i>Industrial & Draft Tube and Chemistry Research</i> , 2007 , 46, 2877-2884	3.9	29	
170	Kinetics of Scrap Tire Pyrolysis in a Conical Spouted Bed Reactor. <i>Industrial & Discrete Regineering Chemistry Research</i> , 2005 , 44, 3918-3924	3.9	29	
169	Fountain confined conical spouted beds. <i>Powder Technology</i> , 2017 , 312, 334-346	5.2	28	
168	Kinetic modeling and experimental validation of biomass fast pyrolysis in a conical spouted bed reactor. <i>Chemical Engineering Journal</i> , 2019 , 373, 677-686	14.7	28	
167	A new fountain confinement device for fluidizing fine and ultrafine sands in conical spouted beds. <i>Powder Technology</i> , 2018 , 328, 38-46	5.2	28	
166	Effect of HZSM-5 catalyst addition on the cracking of polyolefin pyrolysis waxes under FCC conditions. <i>Chemical Engineering Journal</i> , 2007 , 132, 17-26	14.7	28	
165	Catalytic steam reforming of biomass fast pyrolysis volatiles over Nito bimetallic catalysts. <i>Journal of Industrial and Engineering Chemistry</i> , 2020 , 91, 167-181	6.3	28	
164	Calculation of the kinetics of deactivation by coke of a silica-alumina catalyst in the dehydration of 2-ethylhexanol. <i>Industrial & Engineering Chemistry Research</i> , 1993 , 32, 458-465	3.9	27	
163	Minimum spouting velocity for the pyrolysis of scrap tyres with sand in conical spouted beds. <i>Powder Technology</i> , 2006 , 165, 128-132	5.2	26	

162	Char-formation kinetics in the pyrolysis of sawdust in a conical spouted bed reactor. <i>Journal of Chemical Technology and Biotechnology</i> , 2000 , 75, 583-588	3.5	26
161	Comparison of Ni and Co Catalysts for Ethanol Steam Reforming in a Fluidized Bed Reactor. <i>Catalysis Letters</i> , 2014 , 144, 1134-1143	2.8	25
160	Catalyst reactivation kinetics for methanol transformation into hydrocarbons. Expressions for designing reaction designing reaction designing reaction designing reaction designing reaction. Chemical Engineering Science, 2001 , 56, 5059-5071	4.4	25
159	Effect of the operating conditions on the conversion of syngas into liquid hydrocarbons over a Cr2O3InO/ZSM5 bifunctional catalyst. <i>Journal of Chemical Technology and Biotechnology</i> , 1998 , 72, 190-196	3.5	24
158	Performance of a Ni/ZrO2 catalyst in the steam reforming of the volatiles derived from biomass pyrolysis. <i>Journal of Analytical and Applied Pyrolysis</i> , 2018 , 136, 222-231	6	24
157	Co-pyrolysis of binary and ternary mixtures of microalgae, wood and waste tires through TGA. <i>Renewable Energy</i> , 2019 , 142, 264-271	8.1	23
156	On the pyrolysis of different microalgae species in a conical spouted bed reactor: Bio-fuel yields and characterization. <i>Bioresource Technology</i> , 2020 , 311, 123561	11	23
155	Principal component analysis for kinetic scheme proposal in the thermal and catalytic pyrolysis of waste tyres. <i>Chemical Engineering Science</i> , 2014 , 106, 9-17	4.4	23
154	Modelling batch drying of sand in a draft-tube conical spouted bed. <i>Chemical Engineering Research and Design</i> , 2011 , 89, 2054-2062	5.5	23
153	Bed Voidage in Conical Sawdust Beds in the Transition Regime between Spouting and Jet Spouting. <i>Industrial & Engineering Chemistry Research</i> , 1999 , 38, 4120-4122	3.9	23
152	OPTIMIZATION OF THE OPERATION IN A REACTOR WITH CONTINUOUS CATALYST CIRCULATION IN THE GASEOUS BENZYL ALCOHOL POLYMERIZATION. <i>Chemical Engineering Communications</i> , 1989 , 75, 121-134	2.2	23
151	Regenerability of a Ni catalyst in the catalytic steam reforming of biomass pyrolysis volatiles. <i>Journal of Industrial and Engineering Chemistry</i> , 2018 , 68, 69-78	6.3	22
150	Influence of contactor geometry and draft tube configuration on the cycle time distribution in sawdust conical spouted beds. <i>Chemical Engineering Research and Design</i> , 2015 , 102, 80-89	5.5	22
149	Deactivation and acidity deterioration of a silica/alumina catalyst in the isomerization of cis-butene. <i>Industrial & Engineering Chemistry Research</i> , 1993 , 32, 588-593	3.9	22
148	Effect of calcination conditions on the performance of Ni/MgOAl2O3 catalysts in the steam reforming of biomass fast pyrolysis volatiles. <i>Catalysis Science and Technology</i> , 2019 , 9, 3947-3963	5.5	21
147	Kinetic Modeling of the Hydrotreating and Hydrocracking Stages for Upgrading Scrap Tires Pyrolysis Oil (STPO) toward High-Quality Fuels. <i>Energy & Energy & </i>	4.1	21
146	Effect of Operating Conditions on Dimethyl Ether Steam Reforming in a Fluidized Bed Reactor with a CuOInOIAl2O3 and Desilicated ZSM-5 Zeolite Bifunctional Catalyst. <i>Industrial & Desilicated Industrial & Chemistry Research</i> , 2014 , 53, 3462-3471	3.9	21
145	Minimum spouting velocity under vacuum and high temperature in conical spouted beds. <i>Canadian Journal of Chemical Engineering</i> , 2009 , 87, 541-546	2.3	21

144	One-dimensional modelling of conical spouted beds. <i>Chemical Engineering and Processing: Process Intensification</i> , 2009 , 48, 1264-1269	3.7	21	
143	Kinetic Modeling for Assessing the Product Distribution in Toluene Hydrocracking on a Pt/HZSM-5 Catalyst. <i>Industrial & Engineering Chemistry Research</i> , 2008 , 47, 1043-1050	3.9	21	
142	Fine particle entrainment in fountain confined conical spouted beds. <i>Powder Technology</i> , 2019 , 344, 27	8 <i>-</i> 2. 8 5	21	
141	New operation regimes in fountain confined conical spouted beds. <i>Chemical Engineering Science</i> , 2020 , 211, 115255	4.4	21	
140	Minimum spouting velocity for conical spouted beds of vegetable waste biomasses. <i>Journal of the Taiwan Institute of Chemical Engineers</i> , 2016 , 60, 509-519	5.3	20	
139	Effect of Pressure on the Hydrocracking of Light Cycle Oil with a Pt B d/HY Catalyst. <i>Energy &</i> Fuels, 2012 , 26, 5897-5904	4.1	20	
138	Solid Trajectories and Cycle Times in Spouted Beds. <i>Industrial & Engineering Chemistry Research</i> , 2004 , 43, 3433-3438	3.9	20	
137	Pyrolysis of plastic wastes in a fountain confined conical spouted bed reactor: Determination of stable operating conditions. <i>Energy Conversion and Management</i> , 2021 , 229, 113768	10.6	20	
136	Effect of Temperature in Hydrocracking of Light Cycle Oil on a Noble Metal-Supported Catalyst for Fuel Production. <i>Chemical Engineering and Technology</i> , 2012 , 35, 653-660	2	19	
135	Local Bed Voidage in Spouted Beds. <i>Industrial & Engineering Chemistry Research</i> , 2001 , 40, 427-433	3.9	19	
134	Isomerization of butenes as a test reaction for measurement of solid catalyst acidity. <i>Industrial & Engineering Chemistry Research</i> , 1990 , 29, 1172-1178	3.9	19	
133	Kinetic modelling of the cracking of HDPE pyrolysis volatiles on a HZSM-5 zeolite based catalyst. <i>Chemical Engineering Science</i> , 2014 , 116, 635-644	4.4	18	
132	Study of temperature-programmed desorption of tert-butylamine to measure the surface acidity of solid catalysts. <i>Industrial & Engineering Chemistry Research</i> , 1990 , 29, 1621-1626	3.9	18	
131	Influence of the kinetic scheme and heat balance on the modelling of biomass combustion in a conical spouted bed. <i>Energy</i> , 2019 , 175, 758-767	7.9	17	
130	Kinetic modelling of pine sawdust combustion in a conical spouted bed reactor. Fuel, 2018, 227, 256-26	67.1	17	
129	Effect of slip boundary conditions on the simulation of microparticle velocity fields in a conical fluidized bed. <i>AICHE Journal</i> , 2013 , 59, 4502-4518	3.6	17	
128	Effect of Temperature on Fine Particle Drying in a Draft-Tube Conical Spouted Bed. <i>Chemical Engineering and Technology</i> , 2011 , 34, 1130-1135	2	17	
127	CFD-DEM simulation of a conical spouted bed with open-sided draft tube containing fine particles. Journal of the Taiwan Institute of Chemical Engineers, 2017, 81, 275-287	5.3	16	

126	Influence of reactor and condensation system design on tyre pyrolysis products yields. <i>Journal of Analytical and Applied Pyrolysis</i> , 2019 , 143, 104683	6	16
125	Enhancement of aromatic hydro-upgrading on a Pt catalyst by promotion with Pd and shape-selective supports. <i>Fuel Processing Technology</i> , 2012 , 101, 64-72	7.2	16
124	Co-feeding water to attenuate deactivation of the catalyst metallic function (CuO᠒nO᠒l2O3) by coke in the direct synthesis of dimethyl ether. <i>Applied Catalysis B: Environmental</i> , 2011 , 106, 167-167	21.8	16
123	Evaluation of performance and moisture sensitivity of glass-containing warm mix asphalt modified with zycothermTM as an anti-stripping additive. <i>Construction and Building Materials</i> , 2019 , 197, 185-194	6.7	16
122	Progress on Catalyst Development for the Steam Reforming of Biomass and Waste Plastics Pyrolysis Volatiles: A Review. <i>Energy & Description</i> 2021, 35, 17051-17084	4.1	16
121	An adaptive lumped parameter cascade model for orange juice solid waste drying in spouted bed. <i>Drying Technology</i> , 2017 , 35, 577-584	2.6	15
120	Influence of the conditions for reforming HDPE pyrolysis volatiles on the catalyst deactivation by coke. <i>Fuel Processing Technology</i> , 2018 , 171, 100-109	7.2	15
119	Prediction of the Minimum Spouting Velocity by Genetic Programming Approach. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 12639-12643	3.9	15
118	CFD modeling of heat transfer and hydrodynamics in a draft tube conical spouted bed reactor under pyrolysis conditions: Impact of wall boundary condition. <i>Applied Thermal Engineering</i> , 2017 , 127, 224-232	5.8	15
117	Pathways of coke formation on an MFI catalyst during the cracking of waste polyolefins. <i>Catalysis Science and Technology</i> , 2012 , 2, 504	5.5	15
116	Fountain Geometry in Shallow Spouted Beds. <i>Industrial & Engineering Chemistry Research</i> , 2004 , 43, 1163-1168	3.9	15
115	Influence of temperature on products from fluidized bed pyrolysis of wood and solid recovered fuel. <i>Fuel</i> , 2021 , 283, 118922	7.1	15
114	Bed-to-surface heat transfer in conical spouted beds of biomassBand mixtures. <i>Powder Technology</i> , 2015 , 283, 447-454	5.2	14
113	Experimental study and modeling of biomass char gasification kinetics in a novel thermogravimetric flow reactor. <i>Chemical Engineering Journal</i> , 2020 , 396, 125200	14.7	14
112	Development of a bifunctional catalyst for dimethyl ether steam reforming with CuFe2O4 spinel as the metallic function. <i>Journal of Industrial and Engineering Chemistry</i> , 2016 , 36, 169-179	6.3	14
111	Influence of the fountain confiner in a conical spouted bed dryer. <i>Powder Technology</i> , 2019 , 356, 193-19	93.2	14
110	Cracking of Coker Naphtha with GasDil. Effect of HZSM-5 Zeolite Addition to the Catalyst. <i>Energy & Comp.</i> ; Fuels, 2007 , 21, 11-18	4.1	14
109	COKE COMBUSTION AND REACTIVATION KINETICS OF A ZSM-5 ZEOLITE BASED CATALYST USED FOR THE TRANSFORMATION OF METHANOL INTO HYDROCARBONS. <i>Chemical Engineering Communications</i> , 1999 , 176, 43-63	2.2	14

108	Solid Flow in Jet Spouted Beds. <i>Industrial & Engineering Chemistry Research</i> , 1996 , 35, 2716-2724	3.9	14
107	Analysis of hydrogen production potential from waste plastics by pyrolysis and in line oxidative steam reforming. <i>Fuel Processing Technology</i> , 2022 , 225, 107044	7.2	14
106	Solute transport characterization in karst aquifers by tracer injection tests for a sustainable water resource management. <i>Journal of Hydrology</i> , 2017 , 547, 269-279	6	13
105	Principal component analysis for kinetic scheme proposal in the thermal pyrolysis of waste HDPE plastics. <i>Chemical Engineering Journal</i> , 2014 , 254, 357-364	14.7	13
104	Fluidization of micronic particles in a conical fluidized bed: Experimental and numerical study of static bed height effect. <i>AICHE Journal</i> , 2012 , 58, 730-744	3.6	13
103	ReactionEegeneration cycles in the isomerization of cis-butene and calculation of the reactivation kinetics of a silicaElumina catalyst. <i>Chemical Engineering Science</i> , 1993 , 48, 2741-2752	4.4	13
102	Real-time monitoring of milk powder moisture content during drying in a spouted bed dryer using a hybrid neural soft sensor. <i>Drying Technology</i> , 2019 , 37, 1184-1190	2.6	13
101	Effect of hydrogen on the cracking mechanisms of cycloalkanes over zeolites. <i>Catalysis Today</i> , 2010 , 150, 363-367	5.3	12
100	Influence of the particle diameter and density in the gas velocity in jet spouted beds. <i>Chemical Engineering and Processing: Process Intensification</i> , 2005 , 44, 153-157	3.7	12
99	MTG Process in a Fixed-Bed Reactor. Operation and Simulation of a Pseudoadiabatic Experimental Unit. <i>Industrial & Engineering Chemistry Research</i> , 2001 , 40, 6087-6098	3.9	12
98	Spout Geometry in Shallow Spouted Beds. <i>Industrial & Engineering Chemistry Research</i> , 2001 , 40, 420-426	3.9	12
97	Selecting Monitoring Variables in the Manual Composting of Municipal Solid Waste Based on Principal Component Analysis. <i>Waste and Biomass Valorization</i> , 2019 , 10, 1811-1819	3.2	12
96	Assessment of product yields and catalyst deactivation in fixed and fluidized bed reactors in the steam reforming of biomass pyrolysis volatiles. <i>Chemical Engineering Research and Design</i> , 2021 , 145, 52-62	5.5	12
95	Unburned material from biomass combustion as low-cost adsorbent for amoxicillin removal from wastewater. <i>Journal of Cleaner Production</i> , 2021 , 284, 124732	10.3	12
94	Kinetic study of the catalytic reforming of biomass pyrolysis volatiles over a commercial Ni/Al2O3 catalyst. <i>International Journal of Hydrogen Energy</i> , 2018 , 43, 12023-12033	6.7	12
93	Catalyst Performance in the HDPE Pyrolysis-Reforming under Reaction-Regeneration Cycles. <i>Catalysts</i> , 2019 , 9, 414	4	11
92	CeO2 and La2O3 Promoters in the Steam Reforming of Polyolefinic Waste Plastic Pyrolysis Volatiles on Ni-Based Catalysts. <i>ACS Sustainable Chemistry and Engineering</i> , 2020 , 8, 17307-17321	8.3	11
91	Thermodynamic assessment of the oxidative steam reforming of biomass fast pyrolysis volatiles. Energy Conversion and Management, 2020 , 214, 112889	10.6	11

90	Correlation for Calculating Heat Transfer Coefficient in Conical Spouted Beds. <i>Industrial & Engineering Chemistry Research</i> , 2016 , 55, 9524-9532	3.9	11
89	Sand attrition in conical spouted beds. <i>Particuology</i> , 2012 , 10, 592-599	2.8	11
88	Profiling solid volume fraction in a conical bed of dry micrometric particles: Measurements and numerical implementations. <i>Powder Technology</i> , 2011 , 212, 181-192	5.2	11
87	Catalytic Pyrolysis of High Density Polyethylene on a HZSM-5 Zeolite Catalyst in a Conical Spouted Bed Reactor. <i>International Journal of Chemical Reactor Engineering</i> , 2007 , 5,	1.2	11
86	MTG Process in a Fluidized Bed with Catalyst Circulation: Operation and Simulation of an Experimental Unit. <i>Industrial & Experimental Unit. Industrial & Industr</i>	3.9	11
85	Water sorption isotherms of roasted coffee and coffee roasted with sugar. <i>International Journal of Food Science and Technology</i> , 1999 , 34, 287-290	3.8	11
84	Smart models to predict the minimum spouting velocity of conical spouted beds with non-porous draft tube. <i>Chemical Engineering Research and Design</i> , 2018 , 138, 331-340	5.5	11
83	A new method to measure fine particle circulation rates in draft tube conical spouted beds. <i>Powder Technology</i> , 2017 , 316, 87-91	5.2	10
82	Estimation of the minimum spouting velocity in shallow spouted beds by intelligent approaches: Study of fine and coarse particles. <i>Powder Technology</i> , 2019 , 354, 456-465	5.2	10
81	Coupling gas flow pattern and kinetics for tyre pyrolysis modelling. <i>Chemical Engineering Science</i> , 2019 , 201, 362-372	4.4	10
80	Comparison of catalytic performance of an iron-alumina pillared montmorillonite and HZSM-5 zeolite on a spouted bed reactor. <i>Journal of Analytical and Applied Pyrolysis</i> , 2018 , 130, 320-331	6	10
79	Evaluation of Drag Models for Predicting the Fluidization Behavior of Silver oxide Nanoparticle Agglomerates in a Fluidized Bed. <i>Industrial & Engineering Chemistry Research</i> , 2013 , 52, 7569-7578	3.9	10
78	Application of a solute transport model under variable velocity conditions in a conduit flow aquifer: Olalde karst system, Basque Country, Spain. <i>Environmental Geology</i> , 1997 , 30, 143-151		10
77	Selective kinetic deactivation model for a triangular reaction scheme. <i>Chemical Engineering Science</i> , 1993 , 48, 2273-2282	4.4	10
76	Comparative analysis of different static mixers performance by CFD technique: An innovative mixer. <i>Chinese Journal of Chemical Engineering</i> , 2020 , 28, 672-684	3.2	10
75	Implementation of a borescopic technique in a conical spouted bed for tracking spherical and irregular particles. <i>Chemical Engineering Journal</i> , 2019 , 374, 39-48	14.7	9
74	Comparison of artificial neural networks with empirical correlations for estimating the average cycle time in conical spouted beds. <i>Particuology</i> , 2019 , 42, 48-57	2.8	9
73	A Note on an Integrated Process of Methane Steam Reforming in Junction with Pressure-Swing Adsorption to Produce Pure Hydrogen: Mathematical Modeling. <i>Industrial & Description of Chemistry Research</i> , 2015 , 54, 12937-12947	3.9	9

7 ²	Imaging the Profiles of Deactivating Species on the Catalyst used for the Cracking of Waste Polyethylene by Combined Microscopies. <i>ChemCatChem</i> , 2012 , 4, 631-635	5.2	9
71	Kinetic modelling for selective deactivation in the skeletal isomerization of n-butenes. <i>Chemical Engineering Science</i> , 1997 , 52, 2829-2835	4.4	9
70	Valorization of the Blends Polystyrene/Light Cycle Oil and Polystyrene B utadiene/Light Cycle Oil over Different HY Zeolites under FCC Unit Conditions. <i>Energy & Different HY Zeolites</i> 218-227	4.1	9
69	In line upgrading of biomass fast pyrolysis products using low-cost catalysts. <i>Fuel</i> , 2021 , 296, 120682	7.1	9
68	Effect of draft tube geometry on pressure drop in draft tube conical spouted beds. <i>Canadian Journal of Chemical Engineering</i> , 2013 , 91, n/a-n/a	2.3	8
67	Gas Flow Dispersion in Jet-Spouted Beds. Effect of Geometric Factors and Operating Conditions. <i>Industrial & Description of Chemistry Research</i> , 1994 , 33, 3267-3273	3.9	8
66	Kinetic study of the regeneration of solid catalysts under internal diffusion restrictions. <i>The Chemical Engineering Journal</i> , 1987 , 35, 115-122		8
65	Distribution of Cycle Times in Sawdust Conical Spouted Bed Equipped with Fountain Confiner and Draft Tube. <i>Industrial & Draft Tube. Industrial & </i>	3.9	8
64	Kinetic Modeling of the Catalytic Steam Reforming of High-Density Polyethylene Pyrolysis Volatiles. <i>Energy & Description</i> 2017, 31, 12645-12653	4.1	7
63	Kinetic behaviour of commercial catalysts for methane reforming in ethanol steam reforming process. <i>Journal of Energy Chemistry</i> , 2014 , 23, 639-644	12	7
62	Joint Transformation of Methanol and n-Butane into Olefins on an HZSM-5 Zeolite Catalyst in Reaction Regeneration Cycles. <i>Industrial & Engineering Chemistry Research</i> , 2012 , 51, 13073-13084	3.9	7
61	Spout Geometry in Shallow Spouted Beds with Solids of Different Density and Different Sphericity. <i>Industrial & Density Engineering Chemistry Research</i> , 2005 , 44, 8393-8400	3.9	7
60	Polymerization of gaseous benzyl alcohol. 2. Kinetic study of the polymerization and of the deactivation for a silica/alumina catalyst. <i>Industrial & Engineering Chemistry Research</i> , 1987 , 26, 196	50 3 -1 ⁹ 96	5 ⁷
59	CFD modeling and experimental validation of biomass fast pyrolysis in a conical spouted bed reactor. <i>Journal of Analytical and Applied Pyrolysis</i> , 2021 , 154, 105011	6	7
58	Effect of operating conditions on the drying of fine and ultrafine sand in a fountain confined conical spouted bed. <i>Drying Technology</i> , 2020 , 38, 1446-1461	2.6	7
57	Role of temperature in the biomass steam pyrolysis in a conical spouted bed reactor. <i>Energy</i> , 2022 , 238, 122053	7.9	7
56	Minimum Spouting Velocity of Draft Tube Conical Spouted Beds Using the Neural Network Approach. <i>Chemical Engineering and Technology</i> , 2017 , 40, 1132-1139	2	6
55	Development of a dual conical spouted bed system for heat integration purposes. <i>Powder Technology</i> , 2014 , 268, 261-268	5.2	6

54	Optimization of temperature-time sequences in reaction-regeneration cycles. Application to the isomerization of cis-butene. <i>Industrial & Engineering Chemistry Research</i> , 1993 , 32, 2542-2547	3.9	6
53	Polymerization of gaseous benzyl alcohol. 3. Deactivation mechanism of silica/alumina catalyst. <i>Industrial & Engineering Chemistry Research</i> , 1989 , 28, 1752-1756	3.9	6
52	Optimization of the preparation of a catalyst under deactivation. 2. Application to the operation in reaction-regeneration cycles. <i>Industrial & Engineering Chemistry Research</i> , 1989 , 28, 1299-1303	3.9	6
51	Polymerization of gaseous benzyl alcohol. 1. Study of silica/alumina catalysts and reaction conditions. <i>Industrial & Engineering Chemistry Research</i> , 1987 , 26, 1956-1960	3.9	6
50	Effect of the Solid Inlet Design on the Continuous Drying of Fine and Ultrafine Sand in a Fountain Confined Conical Spouted Bed. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 9233-9241	3.9	6
49	Characterization of flow and transport dynamics in karst aquifers by analyzing tracer test results in conduits and recharge areas (the Egino Massif, Basque Country, Spain): environmental and management implications. <i>Environmental Earth Sciences</i> , 2018 , 77, 1	2.9	5
48	Effect of Crushed Glass on Skid Resistance, Moisture Sensitivity and Resilient Modulus of Hot Mix Asphalt. <i>Arabian Journal for Science and Engineering</i> , 2019 , 44, 4575-4585	2.5	5
47	Correlations for calculating peak and spouting pressure drops in conical spouted beds of biomass. <i>Journal of the Taiwan Institute of Chemical Engineers</i> , 2017 , 80, 678-685	5.3	5
46	Fountain Geometry of Beds Consisting of Plastic Wastes in Shallow Spouted Beds. <i>Industrial & Engineering Chemistry Research</i> , 2008 , 47, 6228-6238	3.9	5
45	Gas flow distribution modelling in conical spouted beds. <i>Computer Aided Chemical Engineering</i> , 2005 , 613-618	0.6	5
44	Design Factors in Fountain Confined Conical Spouted Beds. <i>Chemical Engineering and Processing:</i> Process Intensification, 2020 , 155, 108062	3.7	5
43	Fine particle flow pattern and region delimitation in fountain confined conical spouted beds. Journal of Industrial and Engineering Chemistry, 2021, 95, 312-324	6.3	5
42	Prediction of pressure drop and minimum spouting velocity in draft tube conical spouted beds using genetic programming approach. <i>Canadian Journal of Chemical Engineering</i> , 2020 , 98, 583-589	2.3	5
41	Optimisation of combined cooling, heating and power (CCHP) systems incorporating the solar and geothermal energy: a review study. <i>International Journal of Ambient Energy</i> , 2019 , 1-19	2	4
40	Mathematical model and energy analysis of ethane dehydration in two-layer packed-bed adsorption. <i>Particuology</i> , 2019 , 47, 33-40	2.8	4
39	Energetic Viability of a Polyolefin Pyrolysis Plant. <i>Energy & Description (1988)</i> 22, 3751-3759	4.1	4
38	Temperature vs. time sequences to palliate deactivation in parallel and in series-parallel with the main reaction: parametric study. <i>The Chemical Engineering Journal</i> , 1993 , 51, 167-176		4
37	Sorption enhanced ethanol steam reforming on a bifunctional Ni/CaO catalyst for H2 production. <i>Journal of Environmental Chemical Engineering</i> , 2021 , 106725	6.8	4

36	Elutriation, attrition and segregation in a conical spouted bed with a fountain confiner. <i>Particuology</i> , 2020 , 51, 35-44	2.8	4
35	Synergy in the Cocracking under FCC Conditions of a Phenolic Compound in the Bio-oil and a Model Compound for Vacuum Gasoil. <i>Industrial & Engineering Chemistry Research</i> , 2020 , 59, 8145-8154	3.9	3
34	Implementation of industrial health and safety in chemical engineering teaching laboratories. <i>Journal of Chemical Health and Safety</i> , 2006 , 13, 19-23	1.7	3
33	Deactivation Kinetic Model in Catalytic PolymerizationsTaking into Account the Initiation Step. <i>Industrial & Engineering Chemistry Research</i> , 1996 , 35, 62-69	3.9	3
32	Assessment of pressure drop in conical spouted beds of biomass by artificial neural networks and comparison with empirical correlations. <i>Particuology</i> , 2022 , 70, 1-9	2.8	3
31	Conditioning the volatile stream from biomass fast pyrolysis for the attenuation of steam reforming catalyst deactivation. <i>Fuel</i> , 2022 , 312, 122910	7.1	3
30	Conversion of HDPE into Value Products by Fast Pyrolysis Using FCC Spent Catalysts in a Fountain Confined Conical Spouted Bed Reactor. <i>ChemSusChem</i> , 2021 , 14, 4291-4300	8.3	3
29	Multiple-Output Artificial Neural Network to Estimate Solid Cycle Times in Conical Spouted Beds. <i>Chemical Engineering and Technology</i> , 2021 , 44, 542-550	2	3
28	Drying of particulate materials in draft tube conical spouted beds: Energy analysis. <i>Powder Technology</i> , 2021 , 388, 110-121	5.2	3
27	Continuous drying of fine and ultrafine sands in a fountain confined conical spouted bed. <i>Powder Technology</i> , 2021 , 388, 371-379	5.2	3
26	Waste Plastics Valorization by Fast Pyrolysis and in Line Catalytic Steam Reforming for Hydrogen Production 2020 ,		2
25	Influence of Boundary Conditions on CFD Simulation of Gas- particle Hydrodynamics in a Conical Fluidized Bed Unit. <i>International Journal of Chemical Reactor Engineering</i> , 2009 , 7,	1.2	2
24	A First Approach to CFD Simulation of Hydrodynamic Behaviour in a Conical Spouted Bed Contactor. <i>International Journal of Chemical Reactor Engineering</i> , 2008 , 6,	1.2	2
23	Characterization of the Liquid Obtained in Tyre Pyrolysis in a Conical Spouted Bed Reactor. <i>International Journal of Chemical Reactor Engineering</i> , 2007 , 5,	1.2	2
22	Valorization of Polyolefin/LCO Blend over HZSM-5 Zeolites. <i>International Journal of Chemical Reactor Engineering</i> , 2002 , 1,	1.2	2
21	Bed symmetry in the fountain confined conical spouted beds with open-sided draft tubes. <i>Powder Technology</i> , 2021 , 117011	5.2	2
20	Minimum spouting velocity of fine particles in fountain confined conical spouted beds. <i>Powder Technology</i> , 2020 , 374, 597-608	5.2	2
19	Relationship between surface acidity and activity of catalysts in the transformation of methanol into hydrocarbons 1996 , 65, 186		2

18	Pyrolysis of Polyolefins in a Conical Spouted Bed Reactor: A Way to Obtain Valuable Products 2017,		1
17	Two-Dimensional Mathematical Model for Flue Gas Desulfurization in a Spray Column at Low Temperatures with Seawater: Design and Optimization. <i>Energy & Energy & Ener</i>	4.1	1
16	Conical spouted beds82-104		1
15	Efecto del uso de Catalizadores lidos Sobre la Distribucili de Productos en la Pirlisis de Neumlicos. <i>Informacion Tecnologica (discontinued)</i> , 2010 , 21,	0.9	1
14	Solid Velocity in Shallow Spouted Beds Consisting of Solids of Varying Density. <i>International Journal of Chemical Reactor Engineering</i> , 2007 , 5,	1.2	1
13	Operation strategies for the regeneration section of catalytic cracking units. <i>Studies in Surface Science and Catalysis</i> , 1999 , 126, 281-288	1.8	1
12	Activity and stability of different Fe loaded primary catalysts for tar elimination. Fuel, 2022, 317, 12345	7 7.1	1
11	Bio-oil production 2018, 173-202		1
10	Draft tube design based on a borescopic technique in conical spouted beds. <i>Advanced Powder Technology</i> , 2021 , 32, 4420-4431	4.6	1
9	Influence of restitution and friction coefficients on the velocity field of polydisperse TiO2 agglomerates in a conical fluidized bed by the adhesive CFD-DEM simulation. <i>Powder Technology</i> , 2021 , 386, 491-504	5.2	1
8	Empirical Correlation for Calculating the Pressure Drop in Microhydrocyclones. <i>Industrial & Engineering Chemistry Research</i> , 2018 , 57, 14202-14212	3.9	1
7	Catalytic pyrolysis of date palm seeds on HZSM-5 and dolomite in a pyroprobe reactor in line with GC/MS. <i>Biomass Conversion and Biorefinery</i> ,1	2.3	1
6	Estimation of the minimum spouting velocity based on pressure fluctuation analysis. <i>Journal of the Taiwan Institute of Chemical Engineers</i> , 2020 , 113, 56-65	5.3	0
5	An analysis of hydrogen production potential through the in-line oxidative steam reforming of different pyrolysis volatiles. <i>Journal of Analytical and Applied Pyrolysis</i> , 2022 , 163, 105482	6	O
4	A model for predicting the performance of a batch fountain confined spouted bed dryer at low and moderate temperatures. <i>Powder Technology</i> , 2022 , 117506	5.2	0
3	Reply to A correction on one-dimensional modelling of conical spouted beds published in Chem. Eng. Process. 48 (2009) 1264 (20	3.7	
2	Contribution to the Design of an Adiabatic Fixed Bed Reactor for the MTG Process under Reaction-regeneration Cycles. <i>Studies in Surface Science and Catalysis</i> , 2001 , 139, 319-326	1.8	
1	Selective production of light olefins and hydrogen from waste plastics by pyrolysis and in-line transformation 2021 , 265-289		